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A

ABSTRACT

This note deals with the theory of an infinitely wide homogeneous

electron stream which is velocity modulated in a plane perpendicular to

the electron motion. The study is based on the exact wave equation and its

exact solutions. The results are valid in the single velocity region only.
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I. BASIC ASSUMPTIONS

The system we want to study consists of an infinitely wide homo-

geneous electron plasma stream, which is constrained to move in the pos-

itive z-direction. The composition of the plasma is such that the undis-

turbed d-c stream is electrically neutral. In the undisturbed case both the

electrons and the ions move in a field-free space with the velocity v° ,

while the corresponding convection current densities are i and - i.

The presence of the neutralizing ions is necessary in order to satisfy

Maxwell's third equation in the electric d-c field-free case. Furthermore,

in the theoretical case of an infinitely wide stream, the transverse d-c

magnetic field must vanish because the infinitely wide system is symmetrical

with respect to any arbitrary longitudinal axis. It follows from Maxwell's

first equation, which in the undisturbed case is identical to Ampere's

law, that the transverse magnetic d-.c field can vanish only when the total

undisturbed direct-current density vanishes. This explains why we not

only have to neutralize the undisturbed electronic d-c charge density but

the undisturbed electronic d-c current density as well. In a transversely

finite stream the ions can be assumed stationary but the edge effects on

the propagation of the disturbances will then have to be taken into account,

which leads to considerable complexity. 1

The purpose of this study is to make an accurate investigation of

how the system described propagates disturbances that may be produced

by superimposing on the electrons a velocity modulation vto(t), where

t is time, at the plane z = 0. The positive ions are assumed to be so

heavy that they are not affected by the disturbance.
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The propagation of such disturbances takes place in the form of the

so-called space-charge waves. In this case the waves will be plane and

uniform. However, in dealing with space-charge waves, one usually linear-

izes the various equations, which means that cross products between the

quantities describing the disturbances are neglected. In the present study

no such approximations are made.



II. BASIC EQUATIONS

The purpose of this section is to formulate the basic equations des-

cribing the disturbed stream. We introduce the following notation:

v(o, t) = v 1 + v,(z, t) = the electron velocity,

p(z, t) = Po + P1 (z, t) = the electron charge density,

i(z, t) = i0 + i 1 (z, t) = the electron current density,

E(z, t) =E° + El (z, t) = the (axial) electric field.

The quantities with subnotation "o" refer to the undisturbed sys-

tem, while the quantities indexed by I represent the effects of the dis-

turbance. According to our basic assumptions E°0 = 0. Now, the position

of an electron, z, can be written s = z0 + a1 where ao is the undisturbed

position and zI the displacement from this position experienced by the

electron because of the disturbance. Thus we have the following three

relations:

ds da 0  da1V = v = v= . (Ia, b, c)

Accordirg to the definition of convection current density, one has

i = pv i 0iI = (Po+Pl) (v° + 1) -PoVo . (2a, c)

The equation of continuity,

8il 8
8i- +  =0 , (3)

is satisfied by introducing a quantity S in the following manner:

8s aS
1i1 = a" P1 =  (4a, b)
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By the use of Equations (4a, b) and (I a, b, c) in (2c), one obtains

(t+ ds S' P d51

+t- 0 --r

The operator operating on S is just d/dt. Integration yields S = p0 Z,

which is used in Equations (4 a, b) to obtain

8z I  8
o= P0 "-- Pi = I P0  . (5a, b)

The nonrelativistic equation of motion yields

dz2
m =-eE (6)

dt

where -e is the charge and m the mass of the electron. Since 8/Ox = 0

= 8/8j in the infinitely wide system, we get from Maxwell's first equation,

SE i

i + CO T-I

where ao is the dielectric constant of freeespace. Equation (7) states

that the total disturbance current density vanishes. By the use of Equations

(5a) and (6) in Equation (7) one gets

corm d z
-z 0

which is satisfied if

d 2 z1  2
+ p -f(z) =0

where

2Z -ep 0
P mg o

The function f(z) arises from integration. However, it must equal zero

since Equation (8) must hold even for the undisturbed case = 0.
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Equation (8), of course, is valid only when the disturbance is such

that 5! is a single-valued function of z, that is, electron overtaking must

not occur. If electrons with different displacements, say zlI, z12, ...

zis, simultaneously exist in a given plane z, then we must use the ex-

pression,

Il = Po -Ff

rather than Equation (Sa) to eliminate i from Equation (7), and the problem

becomes extremely complicated. Equation (8) has the general solution,

z1 = A sin wt + B cos wpt, (9)

where A and B are constants. This shows that the electrons in any given

z° plane oscillate harmonically with the (plasma) frequency wp around the

undisturbed position zo0 (Mv0 t) independently of the motion of other electrons,

provided the given plane is not overtaken by other electron planes. It is

extremely interesting to observe that the plasma frequency wp is the same

as the one obtained in a linearized theory.
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I. EXACT NONLINEAR PLANE KLYSTRON WAVES

The question arises as to where the nonlinearities are imbedded

with respect to the fact that Equation (8) describes linear oscillations.

The answer to this question is discussed in the present chapter.

By the use of Equation (lb) one can write Equation (8) in the form,

d2Zl 2
d p = 0 (10)

where

Ap = p/vo

The general solution to Equation (10) is

z = F sin z F2 cos pz (11)

F, 2 are constants, that is, they must satisfy the equation,

dF, 2

(12

Now, the expression t --- is constant for any given electron, since
0

do = 0 ,(13)

which one easily proves by the use of Equation (Ib). This means that

F, can be considered as two arbitrary functions of t - Vo By doing

so we account for the fact that although Fl, 2 are constants for a given

electron, the constants associated with another electron in another plane

are, in general, different. Since an electron (plane) is identified by its
o

characteristic constant, t -2., it follows that the amplitude factors
0
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F 1 2 must be functions of this characteristic constant. Observe that

z
- .1. t1 where t1 is the time when the electron plane was located at

v
0

x = 0. Thus one can write

zVo1 T ) sin Po "+F2  ( cos 0 0 (14)

and, with Equations (lb) and (12),

V 0co P (A cosp o z 0 F 2 (psin Pa0 ]. (15)

It is clear that one wishes to express the disturbance quantities

in terms of the actual distance co-ordinate s rather than in terms of the

undisturbed position co-ordinate z o . For instance, if one wants to cal-

culate i I from Equation (14) by the use of Equation (Sa), which contains

a time derivative of s I for a fixed distance z, one has to eliminate s o in

the right-hand side od Expression (14) by the use of the relation so = s-z 1 .

Equation (14) now becomes

Sz F1  si... i (+FZ -)Pco 'p(s-) (16)

This result represents a transcendental equation for a I rather than

an explicit expression. Now, F, and F 2 have to be determined from the

boundary values at the source of disturbance located at, say, x = 0. It

is clear from Equation (16) that zI (t, a) is a nonlinear function of the

boundary values, and the phenomena therefore are nonlinear when ob-

served from a fixed point in space.

Suppose, for the sake of simplicity, that the electron stream is

velocity modulated in an infinite gridded gap of sero length at the plane

a = 0. Thus 1 z 0 at a = 0, which imposes z 0= 0. From Equation (14)

-7-



one now contludes that F2 = 0. Furthermore, if we assume that the

electrons leave the gap with a velocity v0 + v o(t), where vlo(t) is not

necessarily a periodic disturbance, we obtain from Equation (15)

PpvFlit) = vlo(t)

Equation (14) can now be written

z I = f.. O sin Ps o  (17)

whereas Equation (15) yields

v1 =Vlo - coos p o  (18)

Upon elimination of s between Equation (17) and z = s0 + a 1, we

obtain

V1  - (19))
I = Vo F- sin P p (Z-3) . (19)

v0  p- ~ P(~ 1

From Equation (19) one can express 8sl/Ot and 8Ol/$a. By the use of

(Sa, b) we now obtain
vi
V110 sin aPz

il OP (20)

oop1 0 v 1 0  vi0
+- CosP z 0 =- sin~ p avv ~ 0 OP

and

VloVo

-z-' sin a o cos o
_ = VoPp , 0 vl0
P0  Vl° oo (21)

P0 vv 10a~I + v 0co p s o -v sin. pSo

op

-8-



where

(-7- d

m ws w finaly et with
Since, from Equations (6) and (8), E1  m- "p1 we fay t

Equation (17),

m po~ (2z)

In principle one can now plot any one of the disturbance quantities

vil iI, P1 and EI(M zI) as functions of s0 for any fixed time t, provided

the, modulation function v 1 0 (t) is given. Since z,, too, can be plotted

versus z o , it becomes possible to plot v,, i i , P1 and E versus a (=so+sl),

the actual distance co-ordinate. The practical value of such graphs is

limited, however. Instead one would like to have, for example, i I expressed

in a Fourier series in time. We deal with this question in the next

chapter.

Finally we formulate the condition that assures that no overtaking

occurs. Suppose we plot s (as + zl) by the use of Equation (17) as a

function of so for a fixed time. One immediately infers that electron

overtaking has occurred in regions where the slope of our curve is

negative. Thus 8s/Os o 0, or,

s - (23)

0

which is the same condition we are looking for.
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IV. D-C "MODULATED" STREAM

In order to point out a peculiar property of the infinitely wide

stream, we will assume that the stream is 'modulated" by a d-c vel-

0ocity step. Thus the electron velocity is vo + v where Iv0I = constant

v0 , at a a 0, whereas the ion velocity is unchanged. From Equations

(17) and (18) one now obtains

0
Vl

v1
s :-p @in a (24)

o p
and

v vo cos 2 (25)

rather than

0V1 " 1 -- o s ° ( 2 6 )

and

vi= I  , (27)

which are the results one would obtain in a practical system with finite

dimensions. However, it has already been pointed out in Section I that

because of Maxwell's third equation, an infinitely extended d-c stream of

electrons cannot exist unless the charged densities resulting from pos-

itive ions and electrons neutralise. The charge density of electrons

obviously is io/(v ° + vI)j po inthe d-c beam described by Equations (26)

and (27). These Equations are therefore not related to the infinite beam.

Equations (24) and (Z S ) are our exact solutions. They demonstrate

that the electrons, as in the case of a-c modulation (Section V), oscillate

-10-



around the undisturbed position z . It is clear that the average velocity0

of each electron must equal v , that is, the electron must keep in step0

with the, positive ions, if we are to avoid an electrostatic catastrophe.

This is true regardless of the type of modulation impressed on the

electrons.

Those acquainted with the linearized space-charge-wave theory

of the radially finite beam, recall that if the beam radius is large,

then the plasma frequency reduction factors for sufficiently high signal
1

frequencies approach unity. At zero signal frequency, the reduction

factor is zero, which corresponds to Equations (26) and (27).

If we linearize Equations (24) and (25), that, is if we write

0
z I o I p sin~p s

v1 mv 1 cos1 p

we immediately see that the reduction factor for the theoretical infinite

stream at zero signal frequency is unity and not zero, as it is for a very

large but finite beam.

It is now clear that the infinitely wide electron stream necess-

itates assumptions concerning the ions(Section I), imposing certain

restrictions on the electron dynamics that are not present in practical

devices, in addition to the fact that edge effects are neglected.
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V. SINUSOIDALLY MODULATED STREAM

Let us assume for simplicity that the velocity modulation func-

tion is purely sinusoidal, that is,

o (t) = v 0 sin wt , (28)
loo

where v0 is constant. This modulation requires a voltage, vl(t), across

the infinitely short modulating gap given by

2
Vl(t) v .2_

=- v in wt + sin wt , (29)

where V0  0s.. is the undisturbed beam voltage. We shall later deal

with the more practical case of a purely sinusoidal gap voltage. Equation

(17) now becomes

l p- a in Pa sin (wt - o .(30)1 v po 5ino0 p

The validity of Equation (30) is, of course, limited by Condition (23),

which yields

as (so, t) v1
1V0-M ..I cos o sin T- sinP 0a cos T)'- 1, (31)

0 o p p pa0p

where T = wt - peso . Furthermore, we can determine T so that

5l/8z o is maximally negative from the equation,
z
(so , t) (32)

-"=U 0 ,-(

which yields

pe
cot T tan p = 0 . (33)

p
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By the use of Equation (33) in Equation (31), one finds that over-

taking does not occur during any part of the cycle, if

sin P <o Vol (34)

V-

If we consider the expression (34) as an equality, the real solution Ppz °0

if it exists, is the Pp value at which overtaking first occurs. If the

solution is imaginary, overtaking does not occur. It should be pointed out

that Expression (34) is of interest only when P Z P ' If P > Pe, over-
p e p a

taking does not occur at all unless Iv0I > v o , which we exclude, of course.

By the use of Equations (33) and (34) in Equation (30), we can ex-

press the displacement when overtaking is just about to take place, as

0= ;7 ; . (35)
Pi Voe" (e

I

If (v) o < v and P 2 <e ; then P z .- 0 according to Equation (35),
1 0p e p1

and Expression (34) becomes

sn P Z (36)

- 13-



where

M
0vi

v
0

Thus, when M < 1, overtaking does not occur and when M = I overtaking

occurs at a distance X = (w/20p), where X is the plasma wavelength.

If M > i, overtaking occurs at a distance z < T)Xp given by M sin0pZ =i.

The distance is measured from the modulating gap.
2

In the ballistic klystron theory of Webster, electron overtaking
0

occurs at a distance given by X = 1, where X = -Iez is the bunching
0

parameter. It is easy to see that in the present theory the overtaking
sin z

distance is given by X = X s .
p Pp

We will now attempt to express zj explicitly in the form of a

Fourier series. If I vJ < vo , one finds from Equation (30) that IpZi i

Thus Equation (30) may be written approximately as

0
Ii sin(Wt -e (37)

= O sinp e

With the notations wt - z0 = 0 and wt- pez = we can rewrite

Equation (37) in the form,

0-00 = Xp sine , (38)

which may be expanded in a Fourier series

n=co jn

0. D ne (39)

n= -o
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where

I / jn~o

JD n = 79W e 0  d 0  (40)

If n = 0 one obtains

r d%
Do= Iw f (0 - -Wde . (41)

-1r

By the use of Equation (38) one obtains Do = 0.

If n g 0 Equation (40) yields

-W

or V /
I (I d(-0 0 ) 1 -jn 0

0 = - -w

where the first term is ,'qual to zero. Therefore

Dn =  J e °0 dO . (42)

-Ir

Use has been made of the fact that Equation (38) can also be written as

(9 + 2w) - 100 + Zw) = X sin (0 + 2 w) . Upon elimination of 0 between
I p

Equations (42) and (38), one obtains

pj(nX sinS-n9) dO- 3n (nXp) ,(43)

W



Remembering the integral representation for the Bessel functions of the

first kind, we get

Jn(x) = 71W- J *j(xsin y - ny) dy

-V

We finally insert Equation (43) into Equation (39) to obtain

n=nO 0

0 - eo 0 1 jn (nX ) e .n (44)
in p

n = -co
n 0

Since J-n (-nX ) = Jn(nX P), we can rewrite Equation (44) in the form

p p
Z [ *n(nX)sin n(wt - aSe) (45)

For small X one obtains,P

V I v_ I e
0 *p

The normalized a-c current density can be expressed in the form,

.o

1i.FT = 2 Jn(nXp) cos n (wt 5) (47)

1 0 T n

Equation (46) is formally identical to the corresponding result of the

classical klystron theory of Webster. The difference lies in the fact

that the bunching parameter, Xp, takes the effect of the space-charge

debunching forces into account whereas the classical bunching parameter,

-16-



X, does not.

It is well known that X = 1. 84 corresponds to maximum a-c current
p

density (saturation) at the fundamental frequency (n=l). The maximum

efficiency is then 58 per cent. However, X = 1, 6 does not obey ourP

nonovertaking condition, Xp < 1, which means that the theory is not

valid in the range of maximum efficiency. This fact is fully in accord

with our expectations. Suppose we observe the a-c current density at

a fixed distance Z X p/4. Also assume, to begin with, that the drive

is such that overtaking does not occur, that is, Xp < 1. One easily infers

now that an increase in drive (v) will increase the fundamental frequency

a-c current since all-electron *iMbdubmokht closer, to the center of

the bunch. However, if we increase the drive until electron overtaking

occurs at the observation point, then some electrons overtake the center

of the bunch and movesway from it. These electrons tend to weaken the

bunch, whereas others still move towards the center. It is clear that

an optimum drive level exists for each distance s, the saturation drive,

such that a further increase in drive would lead to a weaker fundamental

frequency a-c current because of the effect of electron overtaking. Ob-

viously one can increase the maximum efficiency of a klystron by delaying

overtaking. We shall deal with this question in the next section.

Recently Paschke 4 has studied the planar klystron by solving the

partial differential equation of the problem by the use of the successive

approximation method. His results are obtained in the form of expansions

of the type in Equation (40 rather than in the form of the more accurate

series of Equation (45). According to Paschke's theory saturation occurs

for X =1 . Unfortunately Paschke has not pointed out that this X

p p

-17-



value is well within the overtaking range, where the theory is no longer

valid. Although X8 73 (or our result Xp = 1.84) is certainly close

to the actual saturation value, one can hardly deal confidently with problems

related to saturation unless one properly includes the phenomenon that

produces saturation - electron overtaking - in the theory. An approximate

theory of this type for the infinitely wide stream has been developed by

Roe in unpublished notes. Some of Roe's results have been discussed by

Mihran.

Next we want to study the case of purely sinusoidal voltage modulation
0

V i sinwt. From the energy relation in the modulation gap, one obtains
z( v o(t) V1°

1 +\ Vo = V sinWt (48)

or to the second-order accuracy,

_- V- sin u t - sin 4t (49)

If (P p < , one gets from Equation (17) and z z 0 + it to the second-

order accuracy,

V tovi (sin CO- zpZ) (50)

or with Equation (49),

V 0
au t sin sin(wt -0 )

0 p p e

I-IS

1 1 1(sinppz +sinap s) sin? (Wt - a ) . (
0 po



With the notations

v 01 
e

ol p

and

P2 p p

one can rewrite Equation (52) in the form,

9- =° 0 X p sin - X Z sin2 0 (52)

If we expand Equation (52) in a Fourier series by the use of Equations

(39) and (40), we will obtain

= f - d = - sin2 ed e = (53)

-if

while

(1 0 e"jneo 0 Jne0
D nnjo = w f mo) 0 dO = 1 J d.

-if -11

f eJn(X 1 sin 9- X sin2 0 - e) de

-W

or with

e JnX 2 sine _ 1-jn P. *inOe

: * i s~O IUIIO dO (514)

-W
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Now, the integral in Equation (55) is of the order Zw Jn(nXp1 ).

Thus the second term in Equation (55) is of the order In Xoz times

less than the first term. Since the approximation given by Equation (54)

is based oxn the assumption InX 2  (C 1, we see that under this condition

the second-term in Equation (55) is not a very important one. Observe

that nXp2 is of the order i 4(1 because we normally have p

in addition to X < 1, which is the range of validity of the present theory.

By comparing Equations (55) and (43) we reach the conclusion that

the effect of the nonlinearity in the initial condition Elpression (49): is

considerably less thaa that of the nonlinearities in the drift space. We

should, however, make a comment concerning the fact that Do  0. From

the relation E1 -- 2 2 and Equation (53), we find that there is a d-c

electric field,
=mZ € e I55

Edc e 1 1 (sin P 5 + sin 2 p) (55)

in the stream. The d-c potential disturbance becomes

z 2

V1  00. -E d5= I~ (SP ( Zsp+ Ico s - 3. (56)V1 dc 1dc 6 6 -( pp

Equation (56) shows that the d-c potential in the modulated free stream is

in general not equal to V0 if the nonlinear effects are taken into account.

This implies that an electrode, for instance a demodulating gap, with a

d-c potential V at a distance a, would in general disturb the stream even

at distances less than s, so that V dc(a) is made to vanish at the demodulating

gap. We see from Equation (56) that only when a equals an integral number

of plasma wavelengths does the potential disturbance automatically vanish.

.20-



VI. SAWTOOTH-MODULATED STREAM

The main object of this section is to find a periodic modulation

function vlo(t) such that the electrons associated with any given period

will arrive simultaneously at a plane a = d 4C in the form of infinitely

short bunches with infinite current density. Between the bunches the

current density is sero,while the average current density is i0 . The advan-

tage of such a modulation scheme is that one can convert practically all

the kinetic energy of the electrons into a-c electromagnetic energy at the

modulation frequency w or at any one of the harmonic frequencies nw

(n = 1, 2,3,... ) by the use of a demodulating gap at z = d tuned to the

proper frequency.

Let us consider the modulation period -w/W 4 t < :1w. Suppose

that v 1 0(0) = 0. The problem is to determine the velocity modulation

function vlo(t) in the given interval from the condition that the electrons

leaving the modulating gap during that interval must simultaneously reach

the distance d at a time d/v 0 . Now, for a given electron, s, one ob-

tains, substituting d/v 0 for t in Equation (17,

z d-c 10 sin0 )o . (57)is 0s v-P p on

The expression .. is nothing else than the time, t, when the elec-
v0

tron, s, left the modulating gap. Thus Equation (57) can be rewritten in

the form,

v 1(t) Wt

-0 e1 (0 e sin~ (Ped - wt)j
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which expresses the periodic velocity-modulation function we have been

looking for in the interval -w/W Z t z w/w. If p e e we can write Equation

(58) in the .approximate form,

v 1 0 (t) _____ (9V(__ v o - sin ppd09

0 e p

which is a sawtooth wave. If the velocity distribution in the bunch is

small, that is if v lo(t) < v , the maximum conversion efficiency

will be approximately 100 per cent.

The Fourier expansion of the sawtooth modulation C Equation(59) J is

vi 0 (t) -- 2--)v =lF' sin n t (60)

v (60) Pd

The frequency sjectirum of this modulation signal is infinite. It there-

fore cannot be conveniently produced if the fundamental frequency is in the

microwave range. However, it would be feasible to produce a signal

consisting of the first two harmonics in Equation (60), i. e.,

V -(t) p (sin wt- sinwt) (61)Vo0 Pe snpd

If we now calculate the fundamental frequency a-c current density

amplitude at a distance d from the modulating gap, the result would be

1. 5 i 0 . The maximum fundamental frequency a-c current density in the

purely sinusoidally modulated stream was 1. 16 i 0 according to Equation (47).

The maximum efficiencies in the two cases are 75 per cent and 58 per

cent respectively. Both figures are obtained by extrapolating the theory

into the range past crossover. Signifiraitko, koweve*%b thse results in-

dicate that the presence of the proper second harmonic in the modulation

.2-



signal substantially improves the efficiency. Since a high-power klystron

produces a considerable amount of harmonic frequency electro -magnetic

power in the output gap, it would be conceivable to make use of this power

in the input gap in order to approach the desirable sawtooth type modula-

tion signal.
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ABSTRACT

The exact nonlinear wave equation for longitudinal space-charge

waves in a well-confined cylindrical electron beam is derived under the

assumption of no electron overtaking. A procedure is developed, based

on the method of successive approximations, which makes it possible to

find the solution in the form of Fourier-Ressel expansions satisfying the

proper boundary conditions. In the present analysis the second-order

solution is obtained without any restrictions concerning the diameter of

the electron beam or the enclosing drift tube. The nonlinear part of the

solution describes the properties of the second-harmonic frequency waves.

In general the second harmonic contains linearly (with distance) growing

terms. The growth of the second harmonic has been experimentally demcn-

strated by Mihran. 1 The results reduce to those of Paschke 2 in the case

of very thin beams.
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INTRODUCTION

The interest in the nonlinear behavior of electron beams has

become considerable in recent years. Many electron beam devices,

such as oscillators, are inherently nonlinear. Other devices, e. X.,

power amplifiers, are usually driven at such high signal levels that

linear differential equations do not predict their behavior very accur-

ately. Naturally it is desirable to develop theories for existing devices

with the nonlinearities taken into account. Furthermore, detailed

theoretical studies of nonlinear electron beams and plasmas may reveal

phenomena upon which entirely new devices could be based.

The present report is concerned with the nonlinear aspects of

the Hahn-Ramo waves 3 ,4 (space-charge waves) which have been used

so successfully in the development of the microwave art. The differ-

ential equation for the Hahn-Ramo waves is usually obtained in the

linear form, which means that cross products between the wave quanti-

ties are ignored in the various expressions. The solutions have been

limited to low levels consistent with the linearising approximations.

The exact wave equation, however, is always nonlinear.

For infinitely thick beams the radial variations (and the radial

boundary conditions) vanish, and the oscillatory properties of the elec-

trons are entirely described by the wave equation. The nolinear in-

finitely wide beam is therefore a comparatively simple problem. , 6

However, the radial boundary conditions are of paramount importance

in connection with radially finite beams and have to be taken into account

1



II. THE NONLINEAR SPACE CHARGE-WAVE EQUATION
FOR A RADIALLY FINITE BEAM

Consider a circular cylindrical electron beam propagating in

the positive s-direction. The electron motion is restricted to the z-

direction only, which can be achieved by applying a sufficiently strong

d-c magnetic field. The undisturbed electron beam is axially homo-

geneous, i.e., the velocity, vo, the electronic charge density, pop

and the current density, is(= Pe. ) , are independent of a. However,

Vol P., and io may vary with r, the radial co-ordinate of the circular

cylindrical co-ordinate system (r, +, z). No asimuthal variation will

be allowed, i. e., 8/6 = 0. The undisturbed beam is supposed to be

electrically neutral, i. e., the ionic charge density is - po. The ions

are assumed to be so heavy that they are not affected by a disturbance.

We wish to formulate the wave equation that, together with the

boundary conditions, governs the propagation of asimuthally symnmetrical

disturbances along the electron beam. Contrary to the usual linearising

procedure, we will not neglect any cross products between the quantities

describing the distubance.

Denoting the electronic current density in the presence of the

disturbance as io(r) + iy(r, s, t), where t is time, and remembering

that 8/6+i a 0, we obtain from Maxwell's equations for the transverse-

magnetic waves

3



-1 (rH ) +'o + a-B( 
)

T, oFf
S 8E r

-5 -o (3)

where E(r, s, t) and H(r, a, t) denote the electric and magnetic fields

respectively, while so is the permittivity and go the permeability of

free space.

From Equations (2) and (3) one obtains

o 1 0X 2 HO1  , (4)

where c a 1/-m pot- is the velocity of light in free space. Equation

(4) will be useful in connection with the boundary value studies. By

the elimination of H between Equations (1) and (4), one obtains

9~i [1OEOS

7t -++- .ol . ; 0 - 5)

Ignoring relativistic effects,we can make use of Newton's equa-

tion of motion,

dal

m d a = - a ES  (6)
dt

4



where a I is the displacement of the electron under the influence of the

disturbance while m is the mass and - e the charge of the electron.

It is practical to write the final wave equation in terms of the

displacement s. Since E can be eliminated from Equation (5) by

the use of Equation (6),it remains to express i1 in terms of zl1

The equation of continuity,

ft I + t o , ( 7 )

is satisfied by writing

i and p = (8)

P1 is the excess electron density resulting from the presence of the

disturbance. The quantity 8 can be expressed in terms of sI by the

use of the relation that defines i1 , namely,

I (Po + P1 )(v o + v 1 ) - PoVo (9)

where v 1 a dsl/dt while v 0 +v 1 = da/dt. Using Equation (8) in (9),

we obtain ( 84 d2a aa

The operator operating on S is Just d/dt. Integration yields S a peel,

which is used in Equation (8) to obtain

Is, 
(10)

5



and
8z(

The elimination of Z z and i I from Equation (5) by the use of

Equations (6) and (10) gives the desired nonlinear wave equation

I d 2 1.S2 *2 d2a 1 + 2dt c aJ t t dt7/
(12)

The quantity w p is the angular plasma frequency defined by

2 ep(r) (13)wp(r) = - mo
p meo

Equation (12), of course, is valid only when the disturbance is

such that z I is a single-valued function of z, that is, electron over-

taking must not occur. If electrons with different displacements, say

z11, I 1 2 9 ... , l exist simultaneously in a given plane z, then we

must use

i as In

rather than Equation (10) to eliminate iI from Equation (5), and the

problem becomes extremely complicated.

Equation (12) is a nonlinear partial differential equation be-

cause the time derivative d/dt becomes nonlinear when expressed in

terms of partial derivatives.

Making use of the formula,

d =a (14)

6



we can express the excess electron velocity vI as

d z I as 1  .- I

while

ds 82 XO IOsSl18 1&,3.0 9z

7dtr $7

(16)

where

and

X a t- + 2v o 0 W vo 0 s!

Thus the dot denotes the linearised time derivative.

If one uses Equation (16) in Zquation'(12) to eliminate d2 a/dt -

the result is the exact noalinear partial differential equation of our

problem. It is, however, a hopeless task to find such exact solutions

for the exact wave equation, which.satisfy the boundary conditions. One

is therefore forced to deal with some finite order of accuracy. We will

limit ourselves to the second-order approximation.

The total electronic charge density can never become positive,

thus p0 + p O. by the use of Equation (lLone easily infers that

a a/< 1. As suming 1fia 1/981 we can write

7



81 _1 Ts-

and obtain, omitting all terms of higher than the second-order,

d2s1

" 1 + a(z1 ) (17)

where
&Z

a(s1) = .- sz , I + (ip) (18)

denotes the second-order terms. Introducing the operators P and Q

defined by

I8 8
r =- r-" r ,-

C StZ a

and using relation (17) in Equation (12), we obtain

I(P+ }0 ) Z,+ OW " 1 = " (P+Q)a(z1 ) . (19)

Equation (19) is the desired nonlinear wave equation of second-order

accuracy. All linear terms appear on the left-hand side while the right-

hand terms are nonlinear.

8



II. THE FIRST-ORDER (LINEAR) MULTIMODE SOLUTION

We will ignore the nonlinear part of Equation (19) in this chapter

in order to obtain the linearized solution of Equation (19). We shall need

this solution in the next chapter in order to deduce the second-order solu-

tion. The linear multimode solution is, of course, well known and the

reader is referred to the litexature for a more extensive treatment 8 ' 9

than the one given here.

From now on, we assume that the undisturbed beam parameters

i0 , v0 , and po are constants; i. e., they do not vary with the radial co-

ordinate. We denote the linearized displacement by x and write from

Equation (19),

VP+ Q)'* + 00 x = 0 (20)

The exact solution of this equation is

x = Z AIJo(Tkr) sin (wt - Yks + 0 k) (21)

k= 1

It has been assumed that the disturbance is sinusoidal with an angular

frequency w. The propagation constants yk' of which there exists an

infinite set, are determined by the radial boundary conditions, while the

amplitude coefficients Ak and the phase constants 8 k are given by the

9



initial conditions. The radial propagation constants Tk are defined by

Tk = hk L-(22)

where

2 1/2
hk a(Yk ko)

Ip= Op/v O

Pe= "tVo

ko = W/C .

Matching the radial wave impedance at the edge of the beam yields

an equation 9 from which the various Yk can be determined, via.,

J1(Tkb) K1 (hb) + K 1 (hb)
Tkb k = hb O , (23)

O(Tkb) Ko ( h b ) - K (hb)

where b is the radius of the beam and a is the radius of the lossless

drift tube. Equations (21) and (23) include the electromagnetic transverse-

magnetic waves in which we are not interested. For the space-charge

waves we usually have I k - P. I P.. This means that we can write

h ~ Pe and the right-hand side of Equation (23) becomes a known function.

We shall denote it by F(a, b, Pe). Furthermore, the propagation constants

10



yk can be grouped in symmetrical pairs expressed by

k,2 P

where Rk(-' 1) is the so-called plasma frequency reduction factor of

mode k; R 1 is the largest reduction factor, R2 the next largest, etc.

Expression (21) can now be rewritten in the approitmate form,

0

x 2: Z Aksin(Rkppu+ 0l k ) Jo(Tkr) sin (wt - Pes +2, k),

Kul1

(25)

where
\1/2

Tk lVP T -i (26)

and
Jl(Tkb) (~,

Tkb Jo(Tkb) F(a, b, Pe) (27)

Extensive graphs for the solution R 1 of Equation (27) have been given by

Branch and Mihran,1 0 while an explicit expression for R,, valid for all

k, has been derived by Olving. 11

We will now assume that the beam is excited by pure velocity modu-

lation v0 sin wt at the plane z = 0. Thus the initial conditions at the plane

az=O are x=0 andk=v1 zvo sinwt. One easily finds that 0 k = 0 0 2k

The determination of Ak requires the application of the Fourier-Bessel

expansion.? The result is

o 6o

x 1  1 k (,~).OTr
Z f- sin (wt - aes)  sin (RkIps) Jo(Tkr)
v p- ~ e E Kh0 p kal (28)

11



where Tk is determined by Equation (27) while 4 k denotes

3
1 (Tkb)

k 2 2 (29)
Jo (Tkb) + Jl (Tkb)

The normalized first-order a-c current density becomes

ilx P A s v O

o PoVoat vJoe Cos (wt - Pe) sin (RkA ps) Jo(Tkr)

0 0 OPP k= Rk

(30)

The normalized total first-order a-c current in the beam is

ilx w2rdr a T b )

vJe Cos (Wt - s a) 3
1 (Tk sin(Rk )

0o 1- i0 2 wnrdr vO pp  MI - Tkb/2

0

(31)

It is worth while noting that the significance of higher-order modes

is greater in Equations (28) and (30) than in Equation (31). This means

that the axial variation of the total a-c current may be essentially described

by the fundamental mode k = 1, while the description of the detailed dynamic

state of the same beam may require the higher-order modes to be taken into

account.

12



IV. THE SECOND-ORDER MULTIMODE SOLUTION

The purpose of this chapter is to find the second-order nonlinear

correction term y to the first-order displacement, x. Thus we write

zI 1= x + y , (32)

where x, according to Equation (28), is proportional to th.e modulation

index while y is supposed to be proportional to (vo/Vo) 2 . If

one uses relation (32) and Equation (20) in Equation (19) and ignores
terms of higher order than (Vl/r~o), the following nornhomogeneous linear

differential equation will result:

2(PQ)*' + u Qp = - (P+Q)a(x) (33)

The prcblem is now to solve this equatiom with -he initial and bourzdary

conditions taken into account. The function a A) can be expressed by

the use of Equations (18) and (28) after multiplying the series a-d after

some trigonometric manipulations, as

2 cc

a(x) = - eVo sirn 2(wt - Z Jo(T Jo(T
0 m, m

[(Rm -Rk coos(Rm -Rk) P p + (Rm+R k)Cos (Rm+R k) Ppj}*1

(34)

13



The sum kin is to be taken for all combinations between k = 1, 2, 3,..., o

and ma 1,2,3,...,,o. Thus to make this clear,

E L(km) a L(l, 1) L(l,2) + L(1, 3) 4 + L(. co)
k, m

+ L(2,1) + L(2,2) + L(2,3) + ... + L(2,co)

+L(co, 1) L(o,2) + L(co, 3) + ... L(o,oo)

It should be pointed out that some termswhich should formally

appear in Equation (34). have been neglected on account of the condition

Pe  RkA p introduced already in Chapter Il.

Now, both sides of Equation (32) contain the Bessel operator P,

indicating that the equation is separable provided the quantity a(x) can

be expanded in terms of linear Bessel functions, say Jo(Dnr), n= 1, 2, 3,...

instead of the products J (Tkr) Jo(Tmr). Let us assume that the constants

Dn satisfy the equation,

Dnb j I(Dnb) H(5
J3(Dnb)

where H is a real constant independent of n. Equation (33) allows us to

make use of the Fourier-Bessel expansion 12

JO(Tkr) Jo(Tmr) a on(m) 3o(Dnr) (36)
nal

14



r r

(k. .) 0-j O(Tk r) Jo0(Tmr) Jo(Dnr) d 372 2''
~ (k~zn) - - (Dab) +O J, (Dnb)J37

by the use of Equation (36) we can rewrite Equation (34) in the

form,

co @in ( 2 ) (k, mR ) *j}o(n!

(38)

Since PJ (Dnr) -D 2 J (Dr) and Qa(x) - (2pe) 2 a(x), it is now a

trivial problem to find a solution to the nonhomogoneous Equation (33).

Furthermore, one easily infers by the use of Equation (4) that each term

("mode") in the solution, characterised by its particular radial wave func-

tion J o(Dnr), independently satis*es the radial boundary conditions,

provided

JI(Dnb)%nb JODn) a 7'(&, b, Zooe (9

where the function F is the expression on the right-hind side of Equa-

tion (23) with h replaced by 2p. Observe, howevr, that the various

Jo(Dnr) "modes' taken separately are not solutions to the nonhomogeneous

Zquation (33), only the sum [Eiqution (41)] is a solution.

15



Since F is constant and independent of n, Equation (39) shows

that condition (35), upon which the Fourier-Dessel expansion was based,

is satisfied. Equation (39) is identical to the equation that determines the

linear theory plasma-frequency reduction factors of the different modes

n at the frequency 2w. Thus we can write as in relation (26),

Dn a 0 +°  . 1 ) (40)

where In is the linear theory plasma-frequency reduction factor of mode

n evaluated at the signal frequency 24*.

With these notations the solution to the nonhomogenoous Equa-

tion (33) can be written

Tnonhom.2v si l snt~kamb {kmuI'.k
p

In(k m, 8) Jo(Dnr) (41)

where In(k, m, z) are the axial standing-wavo functions given by

,k= k = cos lm+ Rik ) P 142

2 2

16



The solution (41) will, of course, not satisfy our initial conditions

at the plane a n 0. The conditions are y a 0 and

Vly rs 4 vclr(;"4 Vo)vo

if we assume that the beam is velocity modulated in an infinitely short

#ridded gapat a n O. The vela.o across the gap is VOj si wt. If V0

is the d-c accelerating voltage, then vl/v o  VO/ZV. One can satisfy

the intial conditions by writing

Y z Ynonhom + Yhom . (43)

where Yhom' a solution to the homogeneous part of Equation (38). is

chosen so that the initial conditioms are satisfied. One finds that yhom,

has to be of the form of Equation (41) with J n(k, m, s) replaced by

.x) -It-.m.- .= s CO s) + ?-w coos(aa Mt k a p e-SI

(44)

Thus the proper solutio y becomes

Ya
1 oP*sin 2 wt .Pa)L (k, m)e a #* n.iz J*(Der)

(45)

17



where

n(km, s) m n(k, m, x) + +n(k, M, s) "f m-Rk [o it-l)

-coil SOP~u + 2NmIIk cos (Rm+ Rk)s- coSh1P5}

Actually the solution (45) corresponds to the initial condition vly 0

and not to 2

v y V ouj Vo) (coo Z0t-1)

This is due to the fact that the latter condition would produce additional

terms, which are of the order P/Pe times less than those present in

Zquation (45). Such terms have been neglected throughout our work on

account of the assumption Op *Oe. Thus the significance of the modu-

lating #W aenlinearities is of the order Ap /P times less than the signifi-

cance of the nonlinearities of the drifting beam.

The nora lised second-order a-c curret density becomes

Z P0 0f 0
*0Ia ..-Y coo ZjWt - 0 3) Z k.m

0 o o 0pt nal k,mI

kk m a)n J°(Dr) (47)"'m 17 Cn~

M1



while the normalized total second-order a-c current in the beam is

1co0 n k,

1k mx) jI(Dnb) (8Gkm n j n

19



V. INSCUSSION

Equations (4S), (47) and (48) represent the desired formal results.

Expressions for other second-order wave quantities, such as v ly can

now be easily obtained by the use of Equation (45).

The results do not reveal their physical significance very easily,

since they are expressed in the form of complex series. Further investi-

gations must be made numerically on the basis of specific cases. This

would include, for instance, a study of the sum L in Equation (48) as a

function of u for some typical beam and drift-tube geometries. We hope

to return to this problem in a subsequent report.

However, some comments should be made concerning the axial

standing-wave functions, n(k, m, 5), expressed in Equation (46). First

we notice that n(k, m, a) is an oscillatory but in general nonperiodic func-

tion of a for any fixed combination n, k, m, while the corresponding func -

tion of the linear theory, sin (RkPp ), is periodic. This means, for ex-

ample, that even if we limit ourselves to a lowest "mode study (nakams -),

the second-harmonic standing-wave pattern will not repeat itself periodic-

ally along the beam. The periodic stand-wave pattern is a small-signal

property which does not exist at large-signal levels when the beam is

radially finite. The wave functions 4n(k, m, a) can also be written in the

form,

20



1 sin (R+R5) sin (Rm+Rk+Sn P x
gn(,m, z) = (2R.+R k) I, p x m- np

~(R.m+lYSnPz (Rm+Rjq+Sn)

sini 1 (s -R 4S)Pm- s
+(ZRm-R )  2 (m-R kn)P5 2 n p

RmRk-Sn  Rm-Rk+Sn

(49)

Now, if Rm +Rk-Snw ml, then Rm+Rk-S n pz 0w/Z even for comparatively

large p s. Under this condition,

sini (A (Xm k-S,)Pr x I ,(o
i (Rm+Rk'Sn)Pp5

and the first term in Equation (49) will contain a factor proportional to s.

The second term in Equation (49) will contain such a linearly growing factor

when IRm-Rk-Snj -- 1 or R.-Rk Sn.' 1. However, the condition

I R+R -Sj Ot- I -is of partioular interest, because it will be systematic -

ally fulfilled when m = k=n-2 and A ebW43 (see Olving11 Figure 40). This

is so because the plasma frequency reduction factors for the higher order

modes are approximately proportional to the signal frequency when the

beam circumference parameter Peb is in the practical range (d3). Thus,

when m= k = nZ2, we will have Rm = Rked/2 Sn, and the driving term

a(x), of Equation (33) will contain terms proportional to coo (Rm=Rk)pS

cos Sn ps. Such terms are solutions to the homogeneous part of Equation

(33). Thus these particular driving terms are in resonance with the

natural plasma oscillations of the beam, which, as we have seen, results

21



in a standing-wave pattern growing linearly with distance. The conclusion

is that the higher order terms, m-kanu 2, will be of paramount impor-

tance when Pps becomes large.

If the beam is thin enough, say 0eb 4 1, and so short that the

growing higher-order "modes" can be ignored, then one should expect to

get an adequate representation of the series appearing in Equations (45),

(47) and (48) by including only the fundamental "mode" term m a k w n = 1.

Furthermore, if Pbeb-- 1, one has a I - 1=.•(1, 1) and Jo(Dnr)o 1,

which yield

2

y _r 1 (1, 1, z) sin 2(t - Pe') (51)0 Pp

where

3 R finn(R E151) P
z I P - P sn(R1 - +SI)P~p

et, 11 11 S) Z 1+31S Pp (Rl Sj) PpS

z 1 (52)

+ sin (y1  ) P52)

Since S1 I ZR 1 , for thin beams one can write relation (51) in the

form

2

Y) 0e coFZ pX

3R 1 PA p in (ZRjP p )] - sin 2(wt - Pe 3) .(53)
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Relations (51) and (53) are identical to the results obtained and dis-
2

cussed by Paschke. This proves that Paschke's generalized procedure

(see Appendix) for the use of the linear theory plasma-frequency reduction

factors at nonlinear levels is perfectly justified provided the beam is thin

enough, that is, Peb < I.

If the beam is so thin that the space-charge forces can be neglected,

that is RI--vO, then relation (53) becomes

y o I Vo 0 e 2 sinZ(wt - z) , (54)

which, as expected, is identical to the corresponding result of Webster's13

ballistic klystron theory.

Finally we want to show that Equation (45) is correct when the beam

is very thick, that is, P b >> I and Rk = R m  Sn = I. One immediately

finds that in this case

zn(kmz) = sinp , (55)

and

neZ[ k ,m) CkCm] Jo(Dnr) =4 Z'k Jo (Tkr)] (56)

The right-hand side of relation (56) is the square of the Fourier-

Bessel expansion of the constant I. Using relations (55) and (56) in Equa-

tion (45), one gets for the case of the infinitely thick beam,

t sin asn)(
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Equation (57) is, as expected, identical to the corresponding result

obtained in connection with a study of nonlinear space-charge waves in

radially infinite beams. 5 If we ignore the space-charge waves in relation

(57), 1. e., if we let 0 0 0, we will again get the ballistic result in

Equation (54).
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VI. CONCLUSIONS

The nonlinear, nnnrelativistic space -charge wave equation (12) for

a well-confined radially finite homogeneous electron beam was deduced

under the assumption of no electron overtaking, no velocity distribution,

and no collisions. The first assumption is a serious one, since it does

not allow one to deal reliably with questions related to saturation effects

in very high-power tubes. In fact, overtaking is really the phenomenon

that causes saturation. , 17, 18 The word "saturation" is used to describe

the situation where a small increase of the input drive yields no increase

of the output power.

Unfortunately the analytical description of space -charge waves be -

yond overtaking requires the solution of a complicated system of coupled,
13

simultaneous, nonlinear, differential equations. Apart from Webster's

ballistic theory, the only analytical approach which allows overtaking seems
18

to be an unpublished study by Roe. Roo's work, however, is limited to

the case of radially infinite beams. Some interesting computer results in

the region beyond overtaking for the so-called disk-model beam have been

obtained by Webber. 17, 19 Thus one of the really important challenges of

the present-day microwave electronics is the development of an analytical,

nonlinear, finite-beam, space-charge wave theory in the range past cross-

over.

It is worthLwhile recalling that our nonlinear wave equation, although

limited by the requirement of nonovertaking, is perfectly general in the

sense that it governs the low-level nonlinear behavior of all kinds of

as



0-type space-charge-wave devices, e. g., traveling-wave tubes, klystrons,

etc. The difference between the various tubes lieu entirely in the boundary

conditions. The proper solutions to the wave equation would describe such

low-level nonlinear phenomena as the excitatibn of highero-order harmonic

and nonlinear fundamental-frequency waves, output phase shift as a function

of drive, d-c state of the beam as a function of drive, etc. In principle

one would be able to predict the dynamic state of the beam for any modulating

signal in the noncrossover region completely.

The purpose of the present report was to show that the nonlinear

space-charge wav equation can be solved with the "conducting tunnel"

boundary conditions (klystron). The attack was based on the method of

successive approximations and the use of proper Fourier-Bessel expansions.

The solution was worked out to the second order describing the second-

order harmonic (21w) under the assumption 0 p << P. It was found that the

lowest "0mode"0 of the second harmonic (and all lowest "modes" of the

higher-order harmonics) as a result contains, with distance, growing waves

when the beam is thin (Peb It 1). Higher-order nonlinear "modes" become

important in thick beams (say t < Peb < 3) because the lowest "modes"

associated with the various frequencies do not grow in the thick beam while

certain higher-order "modes" still do. Contrary to the linear modes of the

radially finite beamand the linear and nonlinear modes of the radially infinite

beam, the nonlinear finite beam "modes" do not repeat their standing-wave

patterns periodically along the beam. However, the plasma-frequency



reduction factors, well-known from the linear space-charge-wave theories,

play a significant role in the nonlinear analysis.

It is finally shown in the Appendix that Paschke's recent theory2 '7

is the correct nonlinear equivalent to the linear single-mode space-charge-

wave theory of.Ramo. 2 0

27



APPENNX

The purpose of this appendix is to show that the nonlinear wave equa-

tioa used by Paschke 2 .7 in its region of validity is in agreement with the

Assume 1hat the beam is so thin 4Pb-cl ) that the oscillatory

properties of the electrons at the center and the edge are essentially the

same. This means that radial wave functions can be ignored. Thus zIis

a function of time and axial distance s only. Since overtaking is not per -

mitted, S I is a one-valued function. Frurthermore, a I is periodic in

time provided the initial disturbance is periodic. Thus a 1 can be expanded

in a Fourier series,

s1 (ast) E Z n (a, t) .(A. 1)
uimO

where Z ocan be written in complex notations as

jn4.t - 0 )
Z n I,(at) a an(s) e .(A.Z2)

The problem is to determine the slowly varying functions asis)

with reasonable accuracy. For that reason one has to find an approxi-

mate wave equation for a I, independent of r.



The exact wave equation is Equation (12) which can be written,

dZ2.l p 1 _ 2A$

(PQ) dtZ

If we use Equation (A. 1) in (A. 3) and ignore the radial variations (i. e.,

P * 0) we will get

+~ ( 2.+~ now(&.) 0 . (A. 4)

Eqation (A. 4) obviously describes the radially infinite beam and not the

thin beam we are interested in. In the thin beam the effect of the fringe

field is extremely important and has to be taken into account. Paschke

assumes that this can be done by introducing plasma-frequency reduction

factors into Equation (A. 3) by writing,

+O Znw(s.t) = 0 (A. 5)

d *p2)

Rnw is supposed to be identical to the linear theory plasma-frequency re-

duction factor evaluated for the lowest mode at the frequency no. Thus

R 0. while R1h , a and R2a u 5 in our earlier notations. Equa-

tion (A. 5) is a generalization of Peschkes Equations (4s, b, c) 7 which are

limited to the third-order accuracy. The construction of Equation (A. S) is

supported by the fact that it is definitively correct when the equation is

linearised. However, one may question whether it is strictly valid in the

29



nonlinear case. In what follows we will show that Equation (A. 5) can

indeed be deduced from the exact Equation (A. 3).

Let us write

2" 1 =W (Z n(St )  ;(A 6)

dt n=O

1. e., we expand the acceleration in Fourier series; X is of the form

jn(wt - P e)
X 0(s, t) . bn()e (A. 7)

Since 0 p '4pse, we can expect the amplitude functions bn(z) to vary very

slowly compared to exp (-Jn Ass).

We will now insert Equations (A. 1) and (A. 6) into Equation (A. 3).

If Peb'-- 1, then both ZnW and %W contain a factor Jo(Tnwr), the

radial wave function of the lowest "mode" at the frequency n- (see Chap-

ters M and IV). The quantity Tnw is determined by the radial impedance

matching relation [see Equations (27) and (393:

Tbj 1(Tnwb) - F(x, b, n~e) (A. 8)

nw Jo(Tnwb)

Tnw is simply the linear theory lowest-mode radial propagation constant

evaluated for the frequency nw. Thus Tow = 0 while T,, = TI and

T w a Dip in our earlier notations. When Peb << 1 then Jo(Tnwr) = 1,

while P Jo(Tnr) TZ 0

We make use of the result P 9 - T and Equations (A. 1) and

(A. 6) in (A. 3) to obtain
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-n2 2 Z =r 0. (A.9)
n=0

Collecting terms of equal frequency in Equation (A. 9) and equating to ero,

we get

2
4'

X U+ z = 0 (A. 10)

where one recognizes

7W= (A. 11)

Thus one has

X nw 2  z2A =0 (A. 12)

or

RZ2 2

(X + Rwwp Zn)=0 (A. 13)
n=O

which is the same as Equation (A. 5). Third-order solutions to Equation

(A. 5) have been obtained by Paschke, 7 Romaine, 14 Blair, is and Engler. 16
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ABSTRACT

This analysis describes the modulation and the electron bunching

processes of klystrons. The final velocity of the interaction region or

buncher gap is derived including the first.and second order effects of

transit time. The result is a final velocity which is an infinite series

of time harmonics, and the coefficient of each harmonic is a product of

Bessel functions whose arguments are determined by the physical and

operational parameters of the klystron. This result of nonlinearitiAis

shows that the gap-coupling coefficient is no longer a simple constant but

is a function of the amplitude of modulation and buncher gap width.

The nonlinear bunching process occurring in the drift space is

described by a nonlinear differential equation which is solved by the

method of successive approximations. The solution reveals current and

velocity harmonics which are nonperiodic in space. The higher harmonics

are dependent in part on the lower harmonics, and all harmonics above

the fundamental have irrationally decreasing amplitudes and periods.

The envelope of the higher harmonics grows. in aml~itude iikftaLly with

increase in distance along the drift space. This instability can be inter-

preted as the parametric transfer of energy from the lower harmonics

to higher harmonics. By using an interaction impedance, a correction

to the usual computation of phase velocity of the fast and slow space -

charge waves is obtained. This correction causes the velocity to have

a minimum, never a null because the unequal amplitude of the waves

can never cancel each other. The current at the fundamental and harmonic

frequencies have the expected nulls, but are slightly displaced in space.
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INTRODUCTION

Since Wobster I first described the bunching process of an electron

beam in a klystron, more and more accurate descriptions of this process

have been sought. This has been especially true as higher frequencies and

higher pwers became more predominaat. beiose of these two fatrs,

the transit time of the electrons passing through the interaction region

has become a significant limitation to the accuracy of theories of klystron

modulation which ignore second-order traisittime effects in the buncher

gap. This analysis attempts to describe more accurately the velocity

modulation process of electrons passing through the buncher cavity.

The transit time analysis does not include spaco-charge effects

because there is very little bunching in the interaction region; however,

any accurate drift space analysis must include space-charge effects,

especially for large-signal operation. The bunchtig pro"ee of elctron

beams is described by a nonlinear oquation that is emsavaely diflcult

to solve. Paschke2 has used the method of successive approsimations

to solve this equation; consequently, one can describe the spatial v&ria-

tions of convection-current density and velocity harmonics for a fintis

electron beam.

Although a one dimensional model of the electron beam is used,

this solution rovels several interesting properties of spaco-charge waves.

These properties have been verified by Mibran8 and others. This analysis

becomes very lengthy when used to calculae higher harmonics, but can

always be used for any harmonic desired. The method is used in this

paper to extend Paschko's work to a third.order solution including the
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third harmonic and connections to the fundamental in a finite beam. ThLs

general method can be extended to more complicated beam models, even a

model allowing radial variations.

A correction to the phase velocity of the fast and slow space-charge

waves can be oblaised deriving an interaction impedance used by Mclsaac

6and Wang . This reveals shifts in current-amplitude variations with

space and time, resulting in spatially displaced current nulls and additional

phase shifts in the current components.



third harmonic and connections to the fundamental in a finite beam. This

general method can be extended to more complicated beam models, even a

model allowing radial variations.

A correction to the phase velocity of the fast and slow space-charge

waves can be obtained deriving an interaction impodance used by Mcleaac

6and Wang . This reveals shifts in current-amplitude variations with

space and time, resulting in spatially displaced current nulls and additional

phase shifts in the current components.
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I. TRANSIT-TIME CORRETIOWTO T VZ'LOCITY IN BUNCHZR. RGION

Symbols Used in This Section:

* Acceleration

* Electronic charge (magnitude only)

zcs Circuit field

m Electronic mass

t Any arbitrary time in the interaction region, such that to I tC t

to Time in the alplied voltage cycle at which the electron enters
the bunche: glap.

t f Time in the applied voltage cycle at which the electron exits from
the buncher gap

u D-C velocity ef electrons

o Total final velocity of electrons

If A-C final velocity of electrons

V Applied a-c voltage (.accelerating)

V0  D-C beam voltage corresponding to velocity u

Veon Effective voltage across buncher gap

s Longitudinal direction

Pe Electronic phase constant x */u 0

0 Capacitivity of free space
0

q Ratio e/m

0 Angular frequency of applied voltage (buncher cavity resonant
frequency)
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The purpose of this section is to describe the velocity in the buncher

gap or interaction region of a klystron, including the effect of transit time.

It is necessary that a complete theory involving the transit time consider

both a finite buncher gap width and a changing electric circuit field while

the electron passes throush the interaction region.

The only assumptions made for the model of the klystron interaction

region are the following:

1. The electric field remains constant over the cross section of

the klystron beam.

2. No space charge will be considered within the interaction region.

3. The klystron beam will be considered to be uniform and to move

in confined flow.

The model for the buncher gap used throughout the remainder of

this paper is as follows:

H-WWCHER GAP-.m

+ E-

St tf

UO U Uu0

Figure 1. Bunchor Gap or Interaction Region.
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From the force equation, the acceleration of an electron through

the interaction region can be written as

a E - z q= -- coswt .()
cz d

Integrating the acceleration gives the velocity at any arbitrary time, t,

in the buncher gap as

U a. !I (sinwt - sintt + u()

In order to know the exact velocity of an electron at the end of

the buncher gap, it is necessary to express the velocity as a function

of the longitudinal distance, z . Subsequently, the velocity can be

evaluated at the end of the gap,- a: a d. One means of accomplishing this

is to integrate the velocity to give the distance as a function of time,

solve for time, and substitute for the velocity of Equation (2). Integrating

the velocity gives the distance as

(cosWt - cost) + ( V. sinwt + u) (t-to)

(3)

However, it is impossible to solve directly for time as a function of

distance because Equation (3) is a transcendental equation. One very

accurate approximation is to solve for t as a function of a and cos Ut,

and substitute for At as a function of distance:

wt = Wt +P0e . (4)

Consequently, the time can be written as
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. [o(Wto + Pu) - co.oo]
t -- +. + t o 1 (0

T sinwto + u0

Evaluating Equation (5) at z = d , gives the final time, tf. Substituting

Equation (5) into Zquation (2) gives the final normalised velocity u/u o0 as

U d U c~o s(Wt +Ad cooWt]

u o O Ta{ * )n+wt -JsinwtoJ,

(6)

where

I~ !L i (7)
ZO W

and

V

Equation (6) is an expression for the final velocity of the buncher

gap as a function of the entrance time and gap width. Consequently, onc j

the initial phase of the drive voltage, V, is fixed, the final velocity of

all electrons entering at that instant is determined. However, for

later use in this section, it is convenient to write the final velocity as

a function of the exit time of the electrons. Using half-angle trigono-

metric identities and letting wt = wtf - Pe d , the variational component

-6-



of the final velocity can be written as

I/ d+,sin

Fiz a. (It + -snw ±
u cc 1 [ +t -sin ( ut d){O d

L l [ed sin lwt - 0id).

where

sinj-

P d

From Equation (8) it is possible to expand the final velocity giving

an infinite series of time harmonics. This, however, is not as accurate

as the following approach where Equation (8) is used to calculate a

transit time; that is, the final velocity can be written as a function of

the entrance time and transit time through the buncher gap.

The final velocity, from Zquation (3), can be written as a function

of the transit time, r, giving
)

The transit time can be defined exactly using the average velocity. i,
Ibut the average velocity can be approximated very closely to E (uo + ug).

-7-



Thus the transit time can be written as

d d I(0)
(u + u U

where

1 Uf
2 u0

This 6 represents the correction to the average beam velocity,

uo , resulting from the modulation voltage. Substituting Equation (10)

into Equation (9) and writing in the form of Equation (8), yields

;;o + P d  coos4 - Pod + 2 T+

1- (11)

Comparing Zquations (8) and (11), one can easily see that 6 is approximately

6 = -V Cos& Po)d (12)

It is worth noting that both the correction to the final time in

Equation (8) and the transit time will give the same order correction to

the final velocity. This accounts for the entrance phase of the field being

different, depending upon the time at which the electrons enter. However,

it is shown in Appendix A that Equation (11) can be adjusted to give a second-

order (or higher) correction to the final velocity, by replacing 6 with

1 + Using the binominal expansion gives the final velocity
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S1 +j- coo (1+ (+Z] -o d+"o 2 .d 0o[ - d+ € - '>

2 (13)

This second-order correction represents physically the changig of the

modulating voltage while the electrons are passing through the buncher gap.

Substituting Equation 412) into Zquation (13) , de ckn..vrrte th fiNal

velocity as.an. infinite series of time harmonics whose coefficients are

Bessel functions. The series is of the general form

U =a~ O+Tan cos nwt+ sinn ut .(14)

O -o n
n

Within the limitations of the original assumptions, this series based on

Equation (13) will be exact througih the third harmonic. The complete

series is given in Appendix D, but the main terms are

Uf I+ co~.7)

i~ i+ 1~ 1L 3 o T !,R

3 cooo

[coo! Ped4 C)
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+coo Ar+o coo 3

Equation (14) can be reduced to Webster's I ballistic theory for the

velocity by considering an infinitesimally thin gap; in this case, the final

velocity reduces to

u f a 3

-= I +-coswt- - (I +cos2 t) + -a (3 coswt+ coo83wt)
U0  264

(16)

To beat illustrate the effect that the correction to the transit time

has on the final velocity, an example is chosen for maximum driving con-

ditions for a klystron. Figure 2 shows the velocity as a function of
ed

Wt - --. a with a z I and Ped a Z . Bince the physical and operational

parameters for the klystron are specified, the series expension[:using

Equation (3A bcomes one with constant coefficients. The first three

harmonics and their total are plotted.

The shape of the final velocity curve is basically a cosine wave

correction to the d-c velocity as shown by Equation (13). The decrease

in the d-c (average) level is caused by time variations in the gap-coupling

coefficient. The skewing of the sine wave (shift In maximum and minimum)

is caused by the time variations in the phase of the argument of the cosine

wave. One significant result of this analysis is that the gap-coupling

coefficient has become somewhat meaningless because it is no longer a

constant, but a variable coefficient. In fact, it can be represented by an

-10-



infinite series of time harmonics, whose coefficients are Dessel functions

of J 0d and a, in the same general form of ZquAtion (14) .

To illustrate the skewing, it is possible to examine the rate of

change of the velocity. From Equation (13) the maximum deceleration is

found to be

+~ (17)

while the maximum acceleration is

If the gap is reduced to zero, the acceleration equals the deceleration,

but if a finite Sap exists, the deceleration is greater than the acceleration.

This is clearly shown in Figure 2.
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II. SPACE-CHARGE-WAVE HARMONIC ANALYSIS IN DRIFT REGION

Symbols Used in This Section

t Transverse (subscript)

5 Longitudinal (subscript)

0 Direct-curret (subscript)

P Zulerian polarisation of electron beam

z Total electric field

3 Convection current density-C

J Displacement (transverse) current densityt

p Volumetric charge density

o Relative phase of an electron beam perturbation and reference
microwave tircuit perturbation

o Initial relative phase of an electron beam perturbation and
o reference microwave circuit perturbation

w Plasma frequency

W Reduced plasma frequency
q

Plasma phase constant
P

P Reduced plasma phase constant
q

R Space-charge reduction factor
om

n

-13-



One method of describing the nonlinear behavior of electron beams

in klystrons is to consider the beam-as a medium or fluid in which dis-

turbances or perturbations to the beam propagate. In klystrons, velocity

modulation of the beam produces density modulation, causing space-charge

waves to propagte in the beam. The equation describing the nonlinear

space -charge wave propagation can be solved by the method of successive
2

approximations developed by Paschke.

The assumptions made for this analysis are the following:

1. The one-dimensional confined flow (infinitely strong maypetic

field) model of electron beam will be used.

2. The electron and pase velocities are small coumpared to the

speed of light.

3. The longitudinal component of the r-f electric field is constant

over the transverse area of the beam; that is, the transverse electric

field varies linearly in the radial direction.

4. The effects of potential depression across the beam caused by

space charge and variations in electron velocities cauoed by therm&l noise

are negligible.

Figure 3 shows; the model of a finite, one -dimensionl cylindrical

beam in a cylindrical drift tube. The transverse displacement current

density per meter J represents the loss of current because of fringingt

in a finite beam. This also accounts for the decrease in the longitudinal

field Z , and the longitudinal polarisation P , the dependent variable,
5 5

is given by

P z( +  49)
0 as -1t
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Figure 3. Current FPlow Thiroughi Ilictron-beoan, M4odel.

Thus in tinfinite be& casea, the polivatin ralucoo to thoe~td

dislceen D , inlceohee o fni ng.o Uing t c o n -

tinity. equation

bi &P

Il

Thus ian dhefinte belamasen uc th oaatio eue otelniu

oip

The oni ty equation thoequat bi woin= as
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Si02 21a
,+ o IS + 0 , (22)

where the term ,T represents the transverse coupling or fringe field.

Two additional equations are needed; one is the convection current density,

which is

3 +3 -(p +p)(u + ) (23a)
0 0 0

3 = pu , (23b)
o 00O

the other is the force equation,which is

du Su- -qZ(24)

Combining Equations (19). (22). (23), and (24), one derives the

following perturbation nonlinear differential equation: 2 4

a2 2 2 / a
+ U - + - "+o +(o *si~o - ).

/p apS -1 ap TSa / o=

z~ +

The dependent variable is the polarization and is a function of space and

-16-



time and will have its value given as an initial condition. The second

dependent variable with which initial conditions are satisfied is the velocity

aps P s

o T

Equation (25) can be rearranged In. more meaninfl form, yieldingiap s.

-_a- + Z '!s + ,  ZP +

0

2 2 2

a~ ,p .. * *p a 

aT . °  "r- 5o 2 1.h a z I""a s It , at q .

2 I *p *o

2 ~ a al al fp sP5

3lito Rt) bi p r sn t8 Pst l tops fo by Is oa Ps 81%ofpsi

3u - i I K
0 0 0

0

3 P 0 P
where W X -1 and R.. ~ Thefrlniglujof&finite beam

is accounted for in Equation (25) by roddan the electric fied, as shown in

Eqwaio (19), but fringing is also accounted for by a"e of the space-Cb..rg.

reduction factor. Consequenly, in quation (37), the following relation

is used:

P a R(-)i
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When the method of successive approximations is used, the solution

is assumed to be

P 5 P i + PZ2 + P 0 + (29a)

u u + u + Us3 + ... , (29b)

where P and u are the nth harmonic solution of the polarization and
sn an

the velocity respectively. The method is essentially one in which the soluti6n

for P is obtained ignoring higher harmonic solutions; then P 8 is

obtained using P and ignoring higher harmonic solutions; etc. In this51

case, Equation (27) is solved through the third harmonic. It is convenient

to write Equation (27) as a sum of harmonic components as

f +f +f " + " = 0 , (30)

such that each f : 0 . This solution of Equation (30) is only one of many,n

but because it satisfies the boundary conditions, it is the complete solution.

Substituting the solution of Equation (29) into Zquation (27) snd separating

by harmonics, one obtains

for f =0:t

2P 1 2Pst +I 2 psi + p 2  
=0 (3ta)

o + rv- u-T - qI 51i

for f :0:2
a 2Pz 2.Ps 'Psz+I z2 + p. 2 a_ 'P a 'Pat'Pt

2 2
Is It Ps Z Z s at Oa ~ a Ps* P 2 2 's

+7 2; 2

0 as 0 0

(31b)
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for f = 0:
3

2
P3 2 3+ 1 P.3 +

I  U u t q3 s3
0 0

Oata2 P tI ,a2 P PIO 82 2

00 $pI - IWO, -wt P 4
1 2% +" a " op" "-p ,,

23 d -- 'I -- ml . - -w- IM

" .h--F " -I- " W "IFt- W: l'i'
o as 0

0 . 92 2 w . a2
2 U, t.S I at ml S2

0 0 46O

(Pic)

where and Rn are the space-charge.-wave phase constant mad space-

charge reduction factor respectively for the nth space-charge harmonic.

The corresponding velocity equations for each harmonic component

in Equation (Z9b) are

u eI/Pst + u Pt(32&)

o z (,&o/u(Pa + ".kI (Puto

(39b)



z3 at 0 Ts- \oPo/ z Ius \Po/ us- p/

(3Zc)
POwhere --- is the polarisation displacenment.
p0

The roiainder of this section will be used to describe a poral method

of solving Equation (31) and the solution through the third harmonic will be

presented. First of all, Equation (31a) must be solved for a homogeneous

first-harmonic solution. To obtain a solution for P satisfying the Equationml

(3t) and boundary conditions, consider the second total derivative with respect

to time of a function of time and space, in operator form, as

-- d 2z  82 uaO
--- + 2u a + u 2 (33)

dt2  St

Letting u % u for the first harmonic solution, Equation (3ta) can be written

as I P + A 0 (34)-T dt2 s I qI Pst
q

Equation (34) is in the form of an undamped oscillator equationxd an assumed

solution, which will be shown to satisfy all boundary conditions, is in the form

of
Psi = F(a) cos(wt- a) (35a)

where

F (s) 0 a * 5in qj k (35b)

When one uses the time-varying argument in the form of (Wt - o a) for either

sin or cos time variations, one simplification is

e P -F (S) (3k)
din Ps dn )
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for n = 1, 3, ... Equation (35) must satitfy two initial conditions:

M p al, Sa=oa

(36)
(3) u 1 1  =

it, Sao

Next. Equation (31b) is solved moot easily by substituting Psi in

the form of Eqution (35a) into the drive terms of Equatioa (3b), simplifying

them into the form of

G0(5) +0 t(a) coo 2(6A -a) + G (a) Sin Z (dt -pe)

(37a)

where the functions G(s) are in the ieomral form of

a 0 +2 cos2Il + b sinip qta (37b)

whore -a , a, sad b3 are constants; that is, functions of the second space

haraonic of the fun-mental. Bince the drive terms are in the form of

Equation (37a). the solution for P5. must be in the following form:

P&aa g O(&) + I (a) Coo aied. -3) i(a) aiaam ( & t ) . (38)

k~bstituting Equatons (37) sad (36) into Zquation (3b) gives the solution

for Psa in terms of the deboo4erms as

£mzSa+0 & $(a) aa + b cos,& s+c in3 &.m + AM m t

(39)

where a m, bIn , and cm are ostants, and m t, Z, or 3. Equation (39)

m- 1 -



is an undamped oscillator equation with drive terms in the form of

constants, sines or cosines. The solution to this type of equation,

for the case where P 1 2 0 qI, can be written as

g &M  + b m coo Z t qs c sinZa1 (40)

Aq AqZ 4 Pqi qZ- 4 qI

Thus knowing the drive terms, one can write the particular solution of the

second harmonic polarisation, PSap immediately.

The complementary component of P is necessarily contined in

,(q because of the form of P 1 a and is

I1ls) = sgIs() + 1 a cOoAqZS + b Sin qZS (4t)

where £a and b are two arbitrary constants determined respectively by

the boundary conditions:

PS Sao=0 such that ga a etl0) Sg'101

and

ul = a such that + u
It, s:O 

it, S=o

Finally, Pat and P can be substituted into the drive ter~k for

Equation (3c), Then following the method outlined above for solving P z-

the third harmonic, P&3 , can be obtained. This will give correction terms

to the fundamental in addition to the third harmonic terms.

In general, using the fMndament-al, homogeneous solution in this form,

the higher harmonics can be obtained in consecutive order by using the

-21-



following approach: (In this case the ath harmonic is used instead of the

thitd harmonic to ill strate the general method,)

A. Simplify the drive terms of the nst (nih) harmonic by substituting

for the (lower -order) deive terms the general form in which all the polar -

isation terms can be writtew that is,

P zf f(a ) cos (Wt - s)

P a (a) + g 1( ) ceZ(Wt- 8), + 2 (m) InZ46A- o)

P l- h (a) + h (a) cos (n-) (wt s) + h.(a) sin(a-1) (we - a

(43)

The expression for each harmonic of P atains only the largest manitude

terms; actually, each odd harmonic P a nnias all lower odd barmemics.
and each even harmonic P contais/ all lower eve& barsmoaice ad a d.c

term. in any case, Ititt g Zqustio (4) into th drive terms for P

harmonic reduces the drive terms (main terms only) to

I (a) + I (s) coonwt + I (a) sinnwt , (43!)

where every term in the coefficiente I(a), I (a), and I (a) must be in

the form of

a + Z a cosap a + Z b sinat a (43b)
o nn qm n n qm

where

n a 0,,4... for ve P
and

n a t, 3, 5, ... forodd P
an

-23-



In general 0 p equals all combinations of P q Is such as -~ P P 10q3' ""* P qn

0q1IA q2 Pq1 q3 I Pq1i Pq(n-1);

Aqa*± IAq q Pq4 P qZIP q(n-2)

P 3 i2 P PqIP 0.

q1 qz 0 1PZ q q1 qz q(n-3)

P q1±p ip q3 ... tp qnr wbere n =(I + 2+3 +. + r)

However, the largest terms of the higher harmonics are dependent on the

first harmonic, so generally only the P q1 variations in space are kept.

The second largest terms are dependent on 0 . variations; the third largest

terms are dependent on P q3 and Pq1 k q2 variations, etc. The complete

P anharmonic will contain n "orders" of magnitudes of terms.

B. Because the driving terms of the undamped oscillator equation

are in the form of Equation (43a),tho solution, as in Equation (42), Will be

P on= 1() + I (a) coosn (oA-P 0a) +1 ias) sin n(wt - P0s).("

Substituting this into the oscillator equation shows that the time variations

can be separated out in every case and the drive terms are always in the

form of Equation (43h). The complete particular solution P OWis obtained

by superposition of the individual terms and can be written by inspection

from the drive terms shown in Tables 1. 11, and 111.
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TABLE 1 ,z nqn in qm

Drive Term a an cosn p s b sinnp z
n qm n qr

* q p..n ~ q

qn qn qmqn qm

2 2~
TABLE n , nz Paqnm - qm

Drive Term an copqn a bn sinPSa

Solution on a 0 s  a oo Pq s

I-~la a3  I?- .1L

TA. L M pZ i 2 O

q' - q qm qn

Drive Term ans coop q b a slap qms

Solution a Z, u .aqp "nL& s o
lon3"0S + p a-- 3" + p °3qmS

qqm q

*IE a * paa



Table I gives the solution for the case when the driving frequency

is not equal to the natural resonance of the oscillator equation, and Table 11

gives the solution for the case when the driving is equal to the natural

resonance of the oscillator equation so that the growth of the term is linearly

increasing in space toward infinity.

C. Thus P is of the form
anp

Psup a 10(S) + itp(S) cosn(wt - pa) + i2(a) sinn(wt-PIs) (45)

The arbitrary constants must be added to Equation (45) before the complete

solution of Equation (44) is obtained. Because of the initial choice of the

cosine time variation of Ps S1 the two arbitrary coefficients are contained

in the coefficient of the cosine term. In order that the initial conditions be

satisfied, the coefficient of iI(s) in Equation (44) in terms of ijp(a) in

Equation (45) and the arbitrary coefficients is

iI(S) = itp (s+i cospn + fi sinp n+ , (46)

where i and iZb are arbitrary constants. Using the knowledge that

P a P + P (47a)an sup snc

and

u = u + u (47b)
an snp snc
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where the subscripts p and c refer to the particular and complementary

solution respectively, one can use the initial conditions to determine the

arbitrary constants. The two initial conditions are:

(1) Ps 0 for all time variations. Coasquently

resulting in

iIs 1 0e(0) - t p(0) (46a)

(2) From Webster's theory idr the velocity :rom Equation (16)]

us12~ 3 2 3
uol + (I+ V . a a *

5Oi, t=O

Consequently usnI is the coefficient of the nth harmonic of the

velocity, so that

ib snl - 1n ip(0) (48b)
e , t=O Pq -

Comparing Equations (46) and (47) one can show that

4 1
i(S) .2
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D. After the two arbitrary constants are obtained, P can be5n

written and P harmonic can be solved in the same manner. This

successive approximation is straightforward, but becomes extremely

lengthy for higher harmonics.

The solution for the polarisation, P , through the third harmonic,s

keeping only the largest (highest order) terms is given in Equation (49).

From Equations (32) and (49), velocity is given in Equation (50), and from

Equations (Zia) and (49), the current density is given in Equation (5t). In

Equations (49), (50) and (51), the following ratios are used:

q2 q3 q3

The constants KI - Kto are defined in Appendix C.

The Equations (49), (50) and (51) are necessarily lengthy and

complicated because of the harmonic variations and are more easily

represented graphically. The harmonic content of the velocity and the

current for a typical finite beam are shown in Figures 4 and S. The

typical beam case was done for the SAL-36 klystron.
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Two special cases of the polarization, velocity, and current given

in the last three equations are interesting to examine. The first is the

special came of the infinite beam (or infinite frequency); that is, the space-

charge reduction factor for all space-charge harmonics becomes unity.

Consequently, 4i2 = gi3 = 423 = 1, and the polarization velocity and

current reduce to the following:

P : -J a - sin0p s cos (Ot - e)
P o p
p

W incos 2p] sin ( (n c sf

p

+ ~3 1-. $in 39 z + 3 sino sjI coo3 (&A - 0 a)

+ [-. #in 30 a + 3 sip] a Cos (Wt - 0 ea)}

(52)

u
= I + (1) cospa cos(ot -9eS)

U0

T I )Z "- sinZp" s"inZ("A- t s)

Pp] e

+3 ('a ) j coo P5+ cos coo3( P.a)

+ 7 cos 39p + cos p ] coo (,t - eS)}

(53)
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suaitni a sintP (4 a) a be ut rdedoWb r Mi
70- 7a]iCO5 e ')z I pj6

and current series,.,

The other special case is the opposite sitation which is that of an

while having an extremely small vaha., is directly proportional to the order

p p

of the spae9-chare harmonics. Consequently. in

(U.- p i n
2P

E 3 = o and the solutions n Tables .urt er muustbe usedto The piation,

velocity, and current density are rapidy growing functions in space and

reduce to the following:

Pm = "Jo S I tlq s co ~-~~

ofth spc -ag hamncs. Cnseuenlyan

-3a

-sinsi qj)cs (t- 5a

-35 -



-" ; + P Olqa cosoeZ(wt- e)
00

+ L 3- Pq co,2p z sinZ(wt-l ZJ

}~~~)3~ co)o {p [(* qzCUP
2 q z2) q

I IT ql 2 ) Cos Pqls] coo 3((A -pes)

+ [. ( _ Pqt 2 C) coo(, -

0 + +,,.l %1o.

.
s 3p qqt)

o q l6 lqSc

+ ( ( ) [# si 36A qt- " }(n - s,,)
()() {R + 'q ") IT, ' V,

S+i, a) gi ] 3%t a

+ 3 t p nt si *l(6A - P081

(57)
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Zquations (5Z) through (54) and (55) through (57) are also lengthy

because of the harmonic variations. Consequently.Figures 6-9 are presented

showing the harmonic content of the velocity and current for the infinite beam

and the thin beam cases.
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III. CORRZCTION TO SPACE-CHARGZ PHASE CONSTANTS

Additional Symbols Used in this Section

mn Interaction impedance; it is the ratio of the electric field

at point m caused by the current at point n .

An  Normalised space-charge wave correction for the nth space-

charge wave harmonic.

In the previous section, the space-charge wave variations in dis-

tance were obtained by solving a linear, undamped oscillator equation

(Equation 31). This produced a fast and a slow longitudinal wave whose

phase constants, P. + n are slightly larger or smaller than the fast-

varying electron beam phase constant, P *. Consequently the beating of

the fast and the slow waves produced a (fundamental) solution of the

polarization and current, which was shown respectively to be

P5 0 l .a- s i na Pql acos(t pe ) (58)

-ql I&/)

Js 1J~ l'' 40 ( sin P, a.sin (ot Pe.a) (59)

From Equations (19) and (28) the longitudinal electric field can be

written as

Z s .. (q  )in l co'(.t-Sa) 0 (60)
S, a~ qI pql a o W ets

The ratio of the electric field to the current for the corresponding
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• -wt - P.a) terms of either the fast or slow space-charge waves, is an

impedance, 4 , and from Equations (59) and (60) is written as

51 - (61)

This shows clearly that the impedance does not depend on whether the

fast or slow space-charge wave is being considered. This is approximately

correct, but is not true. In the remainder of this section, the correct

expression for the impedances, dependent on the phase constants of thq

two space-charge waves, will be shown. This work is based on an

article by McIsaac and Wang6 .

In fundamental electromagnetic theory, the electromagnetic fields

can be expressed in terms of a certain distribution of current sources.

If a wave guide has simple boundary conditions, as for example, a

cylindrical wave guide, the total electric field at a point, m , is a

summation by superposition of the electric fields produced by an indivi-

dual exciting current ray in Figure 10. Consequently, if the current

DRIFT SPACE Mz t)

Figure 10. Electric Field and Current Representation in Drift Space.
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distribution in the wave &pido can be represented by a summation of

current rays, or delta functions, the total electric field, at a point, m

is the integration of the products of each delta current and its response

function.

The integration for this interaction theory of current and electric

field is, in general, c implicated, but the specific case of a drift space

is relatively easy. It will be assumed that the cross section of the drift

tube is constant in the longitudinal direction, and the beam can be con-

sidered as a dielectric in the drift tube. Both the electric fields and the

currents will be varying exponentially in time and space. The circular

frequency, is, is constant, and the phase velocity of the currents must

be very close to the phase velocity, p0 , of the electron beam, since

strong interactions exist amopg the currents. Let the total phase constant,

equal the electron phase velocity plus a correction term, p , such that

' - (s,t) a3 e (at e •a)2a
n on n

and

Zm'(s, t). ZomeJ (Wt " P,'5) = InmeJt -* Pes) (62b)

where Jn and Zna e slowly varying functions of a such that

j - JP , (63&)

n ,

and

_J = • "  (63b)

where

P1' =P + 5 and P" 4Ce
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A differential equation describing the interaction theory can now

be written and solved revealing a more accurate value for the special

variations of the electric field and current. In order that Equation (62)

satisfy Maxwell's equations, the electric field at point m caused by the

current at point n must be directly related as follows:

E =jm (', w) Jn , (64)

where the fast variation •J(lt "Pes) has been canceled. The important

detail in Equation (64) is that the impedance, mn(A w',) is a function of

P' , the total phase constant, not just Pe . This means that points m and

n must be relatively close to each other because 4rmn (P', W) varies in

space. However, the closer the points are together, the more accurate

Equation (64) becomes, when a single value of imn (P'W) is used.

For the most convenient as well as most accurate form of

Equation (64) , the point in will be the same as point n . Thus the

electric field will be evaluated at the point at which the currents act,

and the impedance becomes a driving-point impedance. Thus Equation

(64) becomes:

-n -j 4n (P',.) n" (65)

The slow variations of the impedance can be more easily studied

if separated from the fast variations. This can be accomplished by

expanding the impedance in a Taylor series around P. " By using. .gnly

the first two terms of the exapnsion, Equation (65) becomes

Sn a j I rnn  soe  -+  I n(64)
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Taking the derivative of the current from Equation (63a), we can write

the slow-varying phase constant 0 as

dJ n 1
- (67)
dz in

Substituting Equation (67) into Equation (66) , eliminates the slowly varying

p , giving the following differential equation:

EU aJnn (e, ) n an. (P dn (68)n so e s

From the continuity equation in Equation (Zla), the slow-varying

polarization, Pn and normalized current density are related as follows:

in

37 = e(69)
0

Substituting Equation (69) into Equation (68) yields

S C Po P n d 11 (70)
7- nn (~ e 8 ds rO

0 ( 0ei

From Maxwell's equation,

vXH -J + a ' (71)

the maximum ipmpedance occurs when V XH = 0 and is

-1 (72)
nn (max) 040

The ratio of impedance at point n to the maximum possible impedance at
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n is then 4rn ue 0 . This is also the ratio of the space-charge field to

the maximum possible field at the point n, which was defined in the pre-

vious section in Equation (27) as the space-charge reduction factor. The

impedance, in other words, also describes the decrease in the space-

charge electric field caused by fringing and is related to the reduced

plasma frequency as

2

R 2 = q 73)
nn 0

p

From the force equation, the ratio of field to d-c current density

can be written as

2--_. u 0 du * dw (74)

o P o

where

u= u e j ( t - PIR = u •j ( t - 0ee)

O nn jO
-j s

U -Ue•
n o

and
u

w n
Uo

If Equations (73) and (74) are substituted into Equation (70), the impedance

is eliminated, and the interaction equation can be written as

dw n ' /P\(75)
Mz Pe)Po aP P e m Po
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'Using the simplification made in Zquation (35c), gives the relationship

between the normalized slow-varying velocity and the displacement as

W=d Pn (6w - - -( 7 6 )
;dz P0

Finally, substituting Equation (76) into Equation (75), one can write the

interaction equation as a function of the displacement as

(77)

Equation (77) is an undamped oscillator equation very similar to Zquation

(31) , but differs in that it has an additional phase-shift term proportional

to the first derivative of the polarization, which in the velocity. This

imaginary phase-shift ta&-m can be used to represent the energy required

to supply the Poynting power flow associated with a bunched beam in the

velocity modulated klystron.

Using any of the common methods for solving the oscillator equation,

Equation (77),one can write two solutions as

1, 7 .. lNP +CL CA2N V (78)

where 2

8 ln I e

$Iln 0 0

The subscript, n , is the number of the space-charge wave harmonic.

-48-



+1

f

Figure 11. Variation& of Compo*ei*of 'A,. versus

In order to see how the A, 2 solution$ vary with o the c .urve.a igiies

11 wLd-1Z Aee helpful.

From Figure 11, it is clear that C Is always a positive quantity.I P
Consequently, the quantity C C. A. In IXquation (78) can be drawn

from Figure 11 to be as illustrated in Figure 12. Thus Figure 12 shows

that An reaches a maximum at about P. a 1000 radians per motor and

is sero at sero frequency and at Infinite frequency. The energy required

to supply the Poyntlnrpower flow is proportional to An
The solution, Uquation (78), can be written in terms of a correction

to the space-charge wave harmonic as

9P -(79)
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Figure 12. A nversus A

where plus and minus refer to the slow and fast wave respectively. The

phase velocity, v., is written as
p

But P q is slightly larger than Pq . and P q - is slightly smaller than

P .u Consequently, both the slow and the Last wave are moving slightly

slower than they were in the solution in Section U.

The exponential form of the two phase constants, P-V±, can be

reduced to the form of a correction to the polarization solution, P a, in

Section 11. From Equation (),the form of the space-charge wave

harmonics is

sin

coo{

-so-



Applying the correction of Equation (79) to the above spatial variation,

gives the corrected spatial variation

sin 2
cosO V +n az c n Aqn - j sin An Pqn }  (81b}

nn
However, Figure 12 shows that A n is small compared to one and AZn

would be negligible compared to one, so form (81b) reduces to the following

form

sin
(mo (co a -ajsinA (co Aa) (SI c)

coo qn n  iqn n qn

As An approaches zero, form (81c) returns to form (81a), which must

be the case.

The form (81c) , when used to correct Equations (49), (50), and

(51) yields the following results for the first two space-charge wave har-

monics for polarisation, velocity, and current density:

P =sin Pqiz coosS']Pi= Wql q

"o " sinZO + cosZ ql•ssin20'

-,i+gI coo P as sin 01"

+. 4*1 3 sinZ P (cooZ APz + cosZO')0 4412a - IJ
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where

o = at
0

0' = et - (Pz + A1 Jqi)' = 0 -+L Aq s

" = Zwt - (ZlAZP) -s Z P iz

u

0 =0 4 ( A a5q cose' - s inAqx sin8

0q " 4(Cz -l I ql = P=

in~ z sin29S'+A 1 cosap 2 cooz0'

+ 2 Pqi4 (1ouZA 1 Pql I coIZO)/

+sinZ' 4 (14o CZ2lS(1+coeZO')

+ (1 4. CosZ 0e) (1 + coezO)
e f~ql

in ) 0qZ= zinO" + A? c cosO'

4 2 1 2q
5 ; - I ao I

+-8 z _ ZcoPq , , I (83)
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7-3-- - sin nql sinS'
0o ql

+ (2 [.z Co820+ 6c
o+ 1o2 C' PqlUCO Zos

4e1.- 1 w

+ ! 244 12 2 -1ie Iql in O

4 ~ - 1 € qjfl

I 5- 8422'q sinp mainS" 84

412 2'- q2

The Zquations (82). (83), and (84) are complicated and are presented more

conveniently in graphic form. The velocity for the first two space-charge

wave harmonica are given in Figure 13.
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CONCLUSIONS A D KCO1QIENDATIONS

In Section I, the electron transit time allowing for a changing electric

field was described. A second order velocity correction was expanded in

Appendix B,giving the final time as an infinite series of time harmonics.

Since the transit time was obtained by averaging the transit times for initial

and finallvelocity, the analysis is quite accurate for transit angles less

than w/Z radians. Figure 2 clearly shows the skewing of the conventional

sinusoidal transit time correction caused by the higher harmonics. This

skewing represents the effects of the transcendental relation (Equation 5)

between distance and time in the interaction region. Because the final

velocity is an infinite Fourier series, the meaning of a gap-coupling

coefficient must be changed; it can no longer be considered a constant,

but a function of modulation and buncher gap width.

In Section TT, the nonlinear bunching process in electron beams,

including space charge effects, is solved for finite beams by the method

of successive approximations. The two special cases of infinite beam and

thin beam give the two extreme conditions of the general solution. For the

infinite beam case, Figure 7 shows that the peaks and nulls of the current

harmonics occur at the same point, and nulls are always separated by the

period of P z = w . Moreover, the amplitudes for each harmonic are

constant with distance. For the thin beam case, Figure 9 shows that the

peaks and nulls of the nth harmonic occur in n-multiples of the fundamental

period of P q1 = w , and the amplitude rises as (n-l) power of distance.

The growth of the higher harmonics physically represents the parametric

transfer of energy between the fundamental and the higher harmonics.
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Although the higher harmonics grow at an increasingly faster rate with

distance, they saturate at a decreasingly lower amplitude. In the limit

of the thin beam case, all harmonics continue to increase until they saturate.

For the finite beam case, Figure 5 shows that the period of the

current harmonics decreases irrationally while the amplitudes of the

peaks initially increase with distance. They are expected to fall and rise

in a nearly periodic manner. The initial rise of the peaks has been experi-

mentally verified by Mihran8 . Both the irrational decrease in period and

the harmonic growth are caused by combining the particular solution

whose spatial variations are functions of the plasma phase constants of

the lower harmonics, and the complemonubwy solution whose spatial

variations are functions of the plasma phase constant of the harmonic

itself. The plasma phase constants are dependent on the space charge

reduction factors of the n harmonics. Moreover, any one harmonic can

be eliminated by varying the transverse dimensions of the beam, by varying

the transverse dimensions of the beam, the a/b ratio, the w/u ratio,0

or the location of the output cavity in order to operate the cavity at the

position at the spurious harmonic current null. However, Figure 5 shows

that for a fixed transverse geometry this is not the most efficient.oparation

of the klystron, because the minimum of the higher harmonic may not

occur at the maximum of the fundamental. Figure 15 shows the changing

of the null position of the second and third space charge harmonics by

varying the beam diameter, the a/b ratio, or the w/u ratio.
0

Harmonics can also be eliminated because they are the sum of

a forced (particular) solution and an arbitrary (complementary) solution.
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By driving the klystron with a signal at the undesirable harmonic of the

proper phase and amplitude, satisfying the complementary solution, this

component of the harmonic can be made to canco exactly the particular

component of the harmonic caused by the lower harmonics of the beam

current at the position of the output cavity.

In Section II, the interaction impedance concept illustrates that

the impedance of each space-charge harmonic is actually a function of the

space-charge wave propagation constant rather than the beam propagation

constant, P. . This approach yields solutions to the beam equation such

that both the space charge wave phase constants for a particular W/u

and transverse geometry are slightly larger than those generally used.

Consequently, the phase velocities are slightly smaller than those

generally used. Since the fast and slow wave velocities are no longer

of the same amplitude, they never cancel; that is, the velocity can only

decrease to a minimum amplitude, never to zero. In higher harmonics

lower order terms of the particular solution also prevent the velocity

from nulling. The current, however, must go to zero and does so, but

the increase in the phase constant causes a slight change in the phase and

location of the null as shown in Equation (84).
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APPENDIX A. TRANSIT-TIM E CORR.ECTION FACTOR

The transit time correction factor, 6 , can be expressed as

accurately as needed, depending on the degree of accuracy desired.

Equation (11) can be written approximately as

uf f
= 14- a I+26 (Al)

UO  U O

such that 6 is a function that contains itself. From Equation (12), it

is seen that

S- -e d coo - td+ ++(Z

2-

For an infinitesimal gap, Zquation (AZ) reduces to

-4F)6=- cos t (A3)

However, from Equation (12) it is seen that for an infinitesimal gap, the

first approximation of 6 is written as

6 = Scosit (A4)
4

Thus comparing Equation (A3) to Equation (A4), one sees that 6 can

always be replaced with 6/(1 + 6) for the next higher order correction.

For example, in the limit, the correction becomes

uf + 6

r' (AS)

-58 -



A more careful observation of this series shows that

6

I= F(6) (A6)

where

F(6) - 6

Solving for F(6) yields

IIz (W+4 -"1

(Only the positive root has meaning.)

Thus combining Equations (A), (A4), (A6), and (A7), one can

write the velocity as

+ 1+ZF(6) = (. +cosWt)t
uo

This is exactly Webster's I theory, proving that 6 can be corrected by

always replacing it as in the transit-time Equation (11)
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APPENDIX B. TRANSIT-TIME VELOCITY-

The velocity of Equation (13) when expanded gives an infinite series

of harmonics, and is in the form of

Uf
=- + a coon (wt-!.) b sin n t-

n n

This series is exactly accurate for the third harmonic (within the limita-

tions of the assumptions made). Using the following definitions:

d

2

d

d k

gives the complete series, through the third harmonic as follows:
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APPENDIX C. CONSTANTS USED IN POLARIZATION EQUATIONS

The following constants are defined for use in Equations (49), (50)

and (51) . When one calculates these constants for a typical beam case, the

g factors can be obtained for various a/b ratios from Figure 14. The

corresponding first null points of the current harmonics are presented

in Figure 15.
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ABSTRACT

In the investigation of harmonic outputs from klystron amplifiers,

two avenues of attack are followed. Large signal equations, valid at all

drive levels and suitable for digital computer solution, are derived.

Small signal equations for use in linear regions of klystrons are also

derived to provide initial conditions for the large signal case. The use

of the equations is illustrated in two appendices which set them up for

the SAL-36, a three-cavity klystron amplifier. Since computer solutions

give no indication of functional variations, analytic solutions are derived

for use in synthesis. They predict the magnitudes of current density

harmonics up to a drive level given by V z 0. 736, and the magnitude of

the fundamental up to y = 2. 8. The main contribution to harmonic cur-

rent density is seen to come from the fundamental beam disturbance.

Plots of theoretical current densities as functions of y are presented.

At low values of y , the maximum of the fundamental occurs at 90

degrees of the plasma wavelength. As y is increased, the maximum

shifts progressively closer to the plane of excitation. This has been

shown experimentally by Mihran5 . A further check of the equations is

made by showing that they reduce to those of Webster in the region of

negligible space charge.
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INTRODUCTION

As high powered klystron amplifiers come into wider use,

spurious outputs become more and more of a problem particularly in

radar applications where a single output frequency is desired. The

inherent nonlinearity of the bunching process causes a klystron beam

to be rich in harmonics which are generally not wanted in the output.

Before these undesired outputs can be minimized, a method of com-

puting them must be developed so that proposed parameter changes

can be evaluated.

Two avenues of attack present themselves. The first is to use

conventional analysis to obtain solutions in closed form; the second is

to use a computer to solve the defining differential equations by numeri-

cal integration. By using a computer, solutions may be obtained

directly and boundary conditions fitted exactly. An immediate objection

is that a computer solution gives no insight into the functional variations

of the parameters involved. An analytic solution in closed form is

therefore much more desirable as a tool for synthesis of klystron beams.

Obtaining an exact solution to a nonlinear equation is often

extremely difficult. When the magnitudes of the variable quantities are

small (small-signal case), many simplifying assumptions may be made

in order to linearize the equation. Solutions then follow easily and the

results obtained are valid within the range of small signals. At large

signal levels the errors involved in many of the simplifying assumptions

grow to such magnitudes that the results are useless. To keep errors

within reasonable limits it then becomes necessary to make fewer sim-

plifications and solve the more difficult equations.
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This study employs both avenues of attack. Equations suitable

for computer solution are set up for both small and large signal cases.

Solutions to the small signal case are valid in the linear region of the

klystron. At this point they provide initial conditions for the large

signal solutions which are valid at any signal level. To aid in the syn-

thesis problem, analytic solutions, valid up to intermediate signal

levels, are set up. Although their results are questionable at very

large excitations, they give the direction and order of magnitude of

parameter changes necessary to minimize spurious outputs. After

changing parameters, computer solutions can again be run to deter-

mine the true effects of the changes.

All equations presented may be used with any klystron. To illus-

trate their use, two appendices have been included to show specific

equations for the SAL-36, a three-cavity klystron amplifier developed by

the Sperry Gyroscope Company for the United States Air Force.

To make this paper more easily readable, the nomenclature used

by others in the field will be used as much as possible. Symbols used

will be defined at the beginning of each section.



SMALL SIGNAL COMPUTER SOLUTION

Symbols:

e - electronic charge (magnitude only)

m - electronic mass

z - longitudinal dimension (along the beam)

Po - average space charge density (magnitude only)

S- variational longitudinal electron velocityz

u - average electron velocity
o

u - total longitudinal electron velocityz

d - gap spacing

V - gap voltage

N.(z) - longitudinal gap-coupling coefficient

rep - peripheral equilibrium radius of the beam

P

Po - variational displacement of the electrons in the longitudinal

direction (from the d-c beam position)

- acceleration of the electrons in the longitudinal directionPo

E - longitudinal circuit electric field (variational)cz

E - longitudinal space charge field (variational)
sz

Small signals are taken here to mean that the amplitude of the

beam disturbance is small enough so that velocity and phase remain

linear. Although harmonics are generated within the beam, they may

be considered to be independent within themselves; that is, no coupling

takes place between the various harmonic components. Since solutions
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are to be limited to linear operating regions, only the fundamental

component will be considered in this analysis.

The physical conditions involved in the problem are as follows:

1. All electrons are initially moving in the positive z-direction

with a uniform d-c velocity, u 0 .

2. Electrons are constrained, by a strong z-directed magnetic

field, to flow in a plus or minus 5-direction only.

3. The d-c beam has an average electron charge density -po

and an equal and opposite positive ion charge density +p0 which form

a neutral plasma in which only the electrons move.

The equation of motion for alectrons in the beam is given as

m zca • (:)-o = - e( z, ) . C

Velocity is the total time derivative of displacement and may be

written

Po".=.d (2)

but from Euler's rules of differentiation

d P z a p P

o P pt Po '

S E( and inserting the result in Equation (3)

gives
P

s d
-= ..- .(5)

uo' dz Po
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Since acceleration is the total time derivative of velocity, it can be

written as

d Po
a =z P (6)

But d 1 z d - Z therefore,

d "z PO (7)
Tz; 7- 2

o U0

The combined results of Equations (1), (5), and (7) yield

37p - U

d z 0 8

d = - - = (1 +1 ) (9)
o mu cz sz

0

These are the main equations, which, when solved, give the velocities

and polarizations necessary to define completely the state of the beam.

It is now necessary to find representations for I and . .

The circuit electric field for a gridded gap is a constant V

over the entire interaction spacing. In higher powered klystrons,

where high density beams prohibit the use of grids, electric field

strength becomes a function of position. It is convenient to normalize

the circuit field to the gridded gap case and then to represent the

field by

9 J _ j(Awt + *)
cz d , r) e

where Mv is the magnitude of the equivalent gridded gap voltage,

d is the gap spacing, and 1 z(z, r) is the longitudinal gap-coupling
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coefficient which gives the geometry of the electric field. Initial phase

angle is accounted for by 4. Electric field measurements have been

made in an electrolytic tank and it was found'that

2
IL(z,r) = A(z): + (rA) B(z) , (11)

where A(z) and B(z) are polynomial approximations to the experi-

mental curves. (See Appendix A.) The expression for the circuit

electric field is then

Ecz = -A(z) + (,r) B(z)1  e , (12)

and is to be used as the time reference at z = 0. Thus, in the first

cavity 4 = 0.

Of course an excitation field in a cavity, as described by

Equation (12), will excite an infinite number of space charge modes.

If it is assumed that only the lowest order mode is important, then

the electric field variations across the beam in the drift space can

be described by a zero order Bessel function of the first kind as
1

shown by Beck. Electric field strength, in this mode, is therefore

weaker at the periphery of the beam than at the center. The field

in the cavity, however, varies as a constant plus a parabola and is

stronger at the periphery. The higher order modes in the cavity

account for this difference. A model analysis of the electric field

becomes necessary if the perturbing field of the lowest order mode

is to be described correctly and it can be made either before or

after the equations are solved. In this small signal case the solutions

will be obtained as if the field in the beam varied exactly as the field
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in the cavity to see what displacements and velocities would occur at

the periphery if all the modes were considered. Results obtained

must then be modified before they can be used as initial conditions

for a large signal solution. The actual modal analysis is shown in

the next section and the modification of small signal results is ex-

plained in Appendix B.

An expression for sz is found from Poisson's equation,

v • L E = (13)
0

Pa Z and
Taking only the longitudinal effects into account, p = PO i' P a

Equation (13) becomes

A _ 2 m P(zEs P W - o_ (14)
a z p e p

epo 2
where - = w (plasma frequency). Equation (14) is exactly true0 P

in the case of a beam of infinite dimensions. Since the transverse

limits are finite, Equation (14) must be modified by replacing W by

z, the reduced plasma frequency. The space charge field inqz

final form is then

2 m P z

8zn zz7 (15)s z qz e po

The combination of Equations (12) and (15) with Equation (9)

results in

tv 2 1 2

uIT A(s) + B(Z) e + pU "o U; 0 m o % ep qz Is P

(16)
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Solutions at any value of radius are specified completely by

considering the two radius values r = 0 and r = r sinceep,

P Z z2 
( 7(!z**) +(A ) [Iu * D: (17

apa

where the subscripts a and p denote axdal and peripheral values

respectively. Equation (16) can now be written as two separate

equations:

d e 0 j(wt + 4) + "i'o,- -' -z .,- A(s) e + Wq .. .
'U/ G a mu '

(18)

37 7- e ~ ) + e C Z

p 0 o 0 p

(19)

The variational polarization distances are assumed to be

(&) [V(z) + j w()] e - e (20)
a

)O/p = P(s) + Jw(s)] e .(Wt - (21)

When Equa.tion (20) is substituted into Equation (8), the result is
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) d ( V(Z) + Jw W(z)) • . (22)

a

Equation (22) can now be combined with Equation (18) to give

d2  r( J(wt " - ' • lv j(wt +4)
d I(va(Z) + j wa(z)) e i= -0 I=(z) e

d z a V~ mu)
0

2

+ 2 (v z) + j w (z) eZ) (23)

After performing the operations indicated and dividing through by
j(Wt - e z)

e , Equation (23) becomes

d (va(Z) + (zWa(W) = e A(.)+ feaV %+
.dz aam (vz) + j

(24)

For solution by a digital computer, Equation (24) must be

separated into real and imaginary parts and the parts expanded into

first order differential equations. Letting e e + + j,

Equation (24) expands into

dva(z)
v '(z) = Pa(z)a

2
d e ' qz

*a; ~~ = Pa~ZD = .- A(z)y+--vg

0 0

d --- S

a (Z) Wa I(z) = q a ( z )  r -0
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Z.z q(Z= qaZ A(s) a + ws 2 z
a~wa('(z d.

o 0

Similarly Equations (8), (19), and (21) can be combined to

give the equations defining polarization distances and velocities at

the periphery of the beam. These are

V(z) = V(z) = (z)

2dpp(z) pp (z) "u" d (A(z) + B(z)) V + lwzvp(z)

d4j - - -PI( )

a- Wp(z) = WI(z) = qp(z) --- 2pr = r
ep

2
Tz qp(z)= qp(z)=- e M (A(z)+ B(z))c +! wp(2,).

mu d u
o 0

Solutions to the Equations SI and S2 will yield the values for v, w

and their derivatives in z at r = 0 and r = r. The values for v
ep

and w give the polarization distances, and multiplication of their

derivatives by u0 gives the velocities. Equation (17) specifies

them at all other radius values.

An IBM-650 digital computer program and a specific solution

for the SAL-36 is shown in Appendix A.
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LARGE SIGNAL COMPUTER SOLUTION

Symbols:

a - relative phase of an electron beam disturbance and the

reference microwave circuit disturbance e = wt - Y.

0 0 initial relative phase of an electron beam disturbanceo

and the reference microwave circuit disturbance. This

is the identification parameter used to identify an electron

all through the theory e =0 =Wt =0.

- variation of phase from the initial relative phase 0

computed in the study of the electron dynamics

= e - 0 = Pe z

Y - normalized longitudinal component (Y eZ).

W(Y, 0o -. normalized variational longitudinal velocity W -z

E cz(Y, 0o} - total longitudinal variational electric (circuit) field.

Its (Y, 0o - total longitudinal variational electric (space charge) field.

I L (Y) nth harmonic (in 0) longitudinal electric (space charge) field.

(. (Y) - nth harmonic (in e) longitudinal electric (circuit) field.
c zn

Eczn(Y) - nth harmonic (in wt) longitudinal electric (circuit) field.

zn (Y, r) - nth harmonic (in wt) longitudinal electric (c.rcuit) fieldf

distribution function showing the geometrical variations

for a gridless gap.

zn '(Y) - nth harmonic (in wt) longitudinal electric (circuit) field

distribution for the lowest order space charge wave mode

at r=0.
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V - nth harmonic (in wt) gap voltage
n

40- nth harmonic (in wt) gap voltage phase angle
^0

i(Y) - total beam current

i(Y) - nth harmonic (in 9) beam current

I - nth harmonic (in wt) induced gap current

Zn - nth harmonic (in wt) circuit impedance at the gap

F(9'-9) - normalized (displacement dependent) space charge

force function (force between two discs of charge

located 01 -0 apart in phase.)

G(O -0) - normalized (displacement and velocity dependent) space

charge force function

6 - nth harmonic (in e) longitudinal space charge reduction

factor

Tn - nth harmonic (in 0) velocity dependent longitudinal

space charge reduction factor

- electron phase constant or wave number -=
e e U 0

- qquare of the beam plasma frequency w eP.0
P P md

d - longitudinal gap separation of the microwave cavity

V - d-c beam voltage0

-i - d-c beam current
0

u - average electron velocity0

a - variational longitudinal electron velocity
5

P
- variational displacement of the electrons in the

PO

longitudinal direction (from the d-c beam position).
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As the amplitude of the beam disturbance increases, the

harmonic content of the klystron rises and space charge forces be-

come more difficult to analyze. With long interaction spaces, long

drift spaces, or large applied signals, electrons may have large

displacements accompanied by severe nonlinearities in phase and

velocity. If a Fourier analysis is made of the various beam para-

meters, solutions are possible only when phase and velocity remain

linear. To overcome this difficulty, partial differential equations

are written for the beam parameters while physical quantities in

the circuit are Fourier analyzed. The theory and methods used

here are based on work done by Wang. 2

In an electron beam, it is desirable to express the dynamical

quantities in terms of an independent variable that identifies any

particular electron. To do this, the entrance phase angle of the

electron at a particular position is chosen as the electron identification

co-ordinate. At the position chosen, the phase angle 0 = Wt - Y is

defined as 0 . At any other location the phase angle 0 will not,
0

in general, be the same as 00 but can be related functionally as

O(Y, 0o). All disturbances are periodic in 0 o since it is evident

that the forces experienced by a particular electron of phase 0

will be duplicated by the electron which starts a whole number of

cycles later. Because of the interrelationships among 0o , wt,

and Y, the disturbance parameters may be expressed in terms of

any two variables of the three. A complete description of the inter-

relationships may be given by a surface in the 00, wt, Y co-ordinate

system as shown in Figure 1.
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Storting /

Line /
Slope I~/ /I / /

Figure 1. Interrelationships Among 0 wt, and Y.

The two main working equations are derived, as in the

small signal theory, from the equation of motion of electrons.

From Equations (1) and (6) and Euler's rules of differentiation

d w a8 - da 25

Using the relationships 3 - u +% s , and MU 0 eV o , and

realizing that d e = 0 since the electron identification parameter

-14-



0 is held constant as the electron is followed in space, Equation (25)
0

becomes

( +(Ye 0 ) ('cz + ms)o + (Be~ Y zv V° (e26)
0 ey 0 C

From Equations (2) and (3)

d z = i=8 z +dz 8 PZ (27)

When Equation (27) is multiplied by 1-- it becomes
O
0

1 d- g(Y,0 0-l*Y OW8 , (
- O(Y, ) = Ae w(Y, o  (l + w(Y, eo }}  (Y ' e (28)

u t 0 0 0 TZ 0

de o

where A 9M = 0, since- = 0 as explained previously.
CM o dO 0"d d

Realizing that = - . - ., Equation (28) transforms into

81(Y, 00) W(Y, 00) Me(Y, o)
0I + W(Y 0 (29)

Solutions to Equations (26) and (29) for all values of 00 from

0 to 2w are sufficient to specify the beam completely. It remains

now to determine I cz and J1 which are physical quantities that

can be represented by Fourier series.

The Fourier coefficients of cz (Y, 0 ) are to be represented

in the following manner:

[ c '  __ jne - -jne]E (Y,o) = E (Y) e j n e . (30)

ca 0 n Ican(Y can

In essence, the Fourier coefficient of the harmonic time series is

csn = rcn(Y) e jY where Ecn(Y) represents an arbitrary part
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of the functional dependence on Y. The advantage of this representation

is that, in general, the physical quantities of interest are propagating

very close to the average electron beam speed and csn (Y) will be a

slowly varying function of Y. Equation (30) may be written in a time

series as

f Y,e 1 F Z (Y) cos nwt 31

cs n can (1

It is convenient here, as in the small signal case, to normalize to an

equivalent gridded gap voltage and use Equation (31) in the form

16 Y. ' )Z ILzn (Y, r) co (G+ Y+ n (2
n d

where 4n is the phase difference between the gap voltage and the

time reference of icz in the first cavity, and nwt = nO + nY by

definition.

In the small signal case, the equations were set up for

solutions at r = 0 and r = r ep. Equation (19) could then be used

to get solutions at all other radius values. As stated then, a

modal analysis of the electric field must be made either before

or after solutions are obtained to determine the actual fields of

the important modes. In this large signal case, the analysis will

be made now so that results can be used without modification.

The expansion in normal modes of the magnitude of the

electric field is

]c = co CnklY) Econk (33)
k



where Z cn is to be normalised so that the integral of its square

over the transverse area of the beam is equal to unity. Only the

lowest order space charge wave mode is being considered and for

this Ecznl is proportional to J (P tnr), where Ptn is the nth

harmonic radial propagation constant and J is the seroth order

Bessel function of the first kind. The summation over k in

Equation (33) vanishes and Ecznl is found to be

E 
JO (Ptn r )

Ec nl = .

Atn rep

A W (P tnr) J0 a (Ptnr) d( tnrjtn I
0 -

Jo (Ptnr)

[Wr ep (Jo0 (Ptn rep) + l (P tnrp) )] I

By multiplying both sides of Equation (33) by Ecznl and integrating

over the transverse area, the value of Cnk(Y) can be determined.

That is

Cnk(Y )  f E csn Ecanl d (TA) (35)

TA

From electrolytic tank measurements Eca n is known to be

E U Lcn  In(Y. r) [A(Y) + B(T). (36)
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Equation (35) can now be solved by using Equations (34) and (36)

Ck(Y). 4!n I2w

Ptn rgp
AM"  / J (P tr) 0#1 r d (Ptnr )

0

Ptn rp

+ Y) r) 3 o (Pt r ) d (P r)
rep2 Ptn4 0

After performing the indicated o:rations and using the result in

Equation (33), the electric field can be represented in space by

Ec [Vn W rep JI (Ptn r OP) A(Y)ca n =d-.-. re aDo(P tn reP + j 12 (Ptn rep Ptn

J~tr. 3 3. 1 (P5tn rep) + 2(tptn rop)z JT0 (Ftn rtop Jtn r2/ JI (JPtn re) ()

+ PtnrepZ () -p B(Y)
rep 2(tn)

3o (Ptn r) " (37)

Equation (37) may be writtenmore simply as

Eczn a inl [KAY) + Ic2 31(y)] JO(ptnr) *(38)

since all other quantities are constants for a given klystron.
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Equations (26) and (29) may now be solved at r = 0 and

all other values obtained from the J (tn r) variations. Comparison

of Equations (32) and (38) shows that at r = 0,

g n(Y. 0) = 'zn (Y) = K.n A(Y) + K2n B(Y) , (39)

and this is to be used directly in Equation (32).

The presence of the disturbance in the electron beam give.

rise to a space charge field which exerts forces on the electrons.

Again the Fourier coefficients are to be represented by

E IY. 0o1 E (nlY) e + -'nY) ] (40)
sz o 2 Lszn asn "I

It is common in klystron analysis to consider the space charge

field as being proportional to the Fourier component of beam current

i . Symbolicallyn

E (Y)j - 62 in
szn J eno n T (Y) (41)

where w is the plasma frequency for an infinite beam and 6p n

corresponds to the plasma frequency reduction factor at the nth

harmonic frequency. An expression for inY) is found by operating

on the Fourier series for the total beam current and applying the

principle of conservation of charge. The series is

i (Y) i +I i(Y) ne +i (Y) e j n O  (42)
0 1 n n n

Both sides of Equation (42) are now multiplied by e "Jmede and the

substitution T(Y) dO = -i dO is made. After integrating both sides,
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there remains

:) - 10 f "jn.dO 
(43)

n J0

which is the desired result.

If Equation (41) in now substituted into Equation (40), and

Equation (43) is substituted for in(Y) but with 0 primed to

distinguish it from the 0 in Equation (40), the result is

S - -Z p f F(e,-e) de0  (44)

where

1 n+8*6n 8n 2-6*2

F(9-,- - V Zn j in n cosn(B'-9)n

It is well to stop here for a moment to consider Equation (44).

Since 0 is periodic, a wavelength can be broken up into0

discs of electrons, let us say twenty. The 0 = 00 disc may0

then be thought of as being repeated in space every Zw radians,

thus making up an entire array of disco. Other arrays may be

visualized for the 0 = 180 disc and so on. If the disc being0

treated at the moment is a 00 disc, and it is located at B,

then the entire 180 disc array at its 0, + ZwK locations will

apply a force to the 00 disc. This space charge force is given

by F('-9). An integration over the twenty discs will then give

the total force on the 00 disc. The other nineteen discs are

treated in similar fashion. Thus Equation (44) represents the

usual space charge field associated with a specific disc at a

specific location in space.
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2

A more recent theory of the space charge force shows that

there is a component of electric field that is proportional to din(Y)

Wang gives the total modified space charge field as

2 d i(Y)

E() mw 2 z nY) mw 2  2 .. o (45).

on' n en2 n dY (5

where n2 is another constant determined by the particular harmonic

frequency and the nature of the circuit under consideration. For

cylindrical drift tubes,

°'2 = ( a 146)

By direct differentiation of Equation (43),

in(Y)

o j -jne One dO (47)
dY T Y o

Substitution of Equation (29) into Equation (47) gives

inlY)
d n -jne

0O dO (48)
dY - 1 + % e

The second portion of Equation (45) may now be evaluated in the

same fashion as the first portion after priming the functions of 00

in EquatiQn (48). The final expression for the space charge field

is then

EC(Yeo = - zv (0 1 [e')-l+ - G(o1- dO

(49)
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where

Q een 2 + WZ Wn2 *2

Sn sinn(e-) - n - n cosn(O,-e)He'-ez) = z" z

Curves of plasma frequency reduction factor have been published

by Branch and Wihran.

The final quantity of interest is the induced current -n a

cavity. This may be computed by relating the VI product to the

integral of Ecz n * Jn in the beam

VnIn = f f (Ecz n  Jzn) d(TA) dz (50)

-0 TA

It must be remembered, however, that solutions are obtained at

r z 0 and that the important parts of Ecz n and Jzn vary as

j o(Ptn r). An average of J02 (tnr) must be taken over the trans -

verse area of the beam and used as a factor in the integral. The

average is
PStnr ep

12 2 2

r 2W Ptnr Jo0(Ptn r) d (P tn r) a 3o0(Ptnrep) + (P tnreplw ep tn

0 (51)

After dividing Equation (50) by Vn and integrating over the transverse

area, the result is

d In r 21& '(Y) -jny
dY [Jo 0 Pnr + J, (Ptn~) r ~ -pd I (Y) e (52)

where e jnY is included to change from a 0 Fourier component to

an wt Fourier component in the cavity.
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To explain how the equations presented fit together, a

schematic diagram of the complete interaction phenomena is shown

in Figure 2.

This simple interaction diagram explains the basic processes

of interaction and the relationships among the physical quantities

involved. The arrowheads indicate the direction of flow by which

one physical quantity is controlled by another. Light lines in-

dicate a simple functional relationship while heavy lines indicate

differential equations connecting the two quantities.

At the top of Figure 2, in the block marked "Beam'" are

three quantities: A(Y, 0o), the acceleration; *(Y, Oo), the

normalized longitudinal velocity; and W(Y, 0 ), the normalized

displacement. The differential relationships I and II are

generally total differential equations in time. Since the electron

identification parameter is held constant, links I and II are

partial differential equations with respect to the variable Y.

These are given by Equations (26) and (29) respectively.

After applying a conservation of charge argument to

Equation (42), link IV is established by Equation (43).

Through an equivalent circuit, the strength of the electro-

magnetic field can be represented by circuit currents In at

various frequencies. Link V represents the differential equations

which are the key linkages between the beam and external circuit.

It is accounted for by Equation (52).

The Fourier components of the circuit field E czn can be

individually related to the circuit currents I through the complex

n
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Figure 2. Interaction Diagram.
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cavity impedance, Z n . This represents link VI. In dealing with

a cavity, the harmonic impedance Zn is usually known. An initial

estimate of harmonic cavity voltage V n is made and Eczn

determined from Equation (32) using I&' (Y). The circuit harmonic
zn

current I is then solved for and an impedance Z ' found byn n

taking the ratioof V to (-In). If Z ' Z n , then a new valuen n n n

of Vn must be assumed and the computations run again to deter-

mine Z" . This process continues until the computed impedance
n

agrees with the known impedance. Conversely, the cavity impedance

required to produce a desired electric field may be computed in

the same manner.

Link VII shows the combination of the Fourier components

of electric field into a total field Ecz(Y, 0 ) and is represented by

Equation (31).

In addition to the circuit force, there is another force

associated with a space charge field I-sz(Y, 0), so named be-

cause it is a field related only to the beam. This force may be

interpreted as a space charge repulsion force between electrons

contained in the beam and is dependent upon both the velocity and

displacement of the electrons. Link IX, provided by Equation (49),

illustrates this dependence.

Finally, the combination of space charge force and circuit

force is used to obtain the acceleration:

x(Y, o ) -I [cL(Y' 0 ) + Is (Y, 0o) (53)

This is link Vm which completes the entire cycle of interaction.
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It should be realized that large signal equations will also

yield valid results under small signal conditions. The main reason

for having separate small signal equations is to save computer time

in the region where disturbances are relatively small.

Appendix B shows the equations set up in form suitable

for numerical integration by an IBM-650 digital computer. All

constants and initial conditions for the SAL-36 klystron amplifier

are calculated and a workable program is given.
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LARGE SIGNAL ANALYTIC SOLUTION

Symbols:

J - average current density
0

3 - nth harmonic variational longitudinal current densityEn

P n - nth harmonic longitudinal electron polarisation vector

- total variational longitudinal electric fielda

m - longitudinal electric field reduction factor

u - d-c velocity of the unmodulated electron beam
0

v - magnitude of gap voltage

Veff - voltage across an infinitesimal gap which has the same

effect on the beam as M in a finite gridless gap

C 1 - constant of proportionality between IVI and Vff

V - anode potential
a depth of modulation

WI - nth harmonic reduced plasma frequencyqn

Aqn - nth harmonic space charge wave propagation constant

-n u° C

y - amplitude parameter y =

S - beam cross-sectional area

Other symbols used in this section have been defined previously

or are evident in the text.

A straightforward way of calculating the nonlinear behavior of

klystrons is to treat the electron stream not as a limited number of

electrons, but as a "fluid" where discrete charges are thought of as

being "smeared out," and to solve the nonlinear space charge wave
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equation for given boundary conditions. The theory to be derived here

always yields single velocities for given positions in space. This

means that in this fluid model, electron overtaking does not occur,

since if it did, the velocity would necessarily become a multi-valued

function of space.

The purpose of this chapter is to derive the nonlinear space

charge wave equation and solve it by third order successive approxi-

mation for a gridless gap klystron amplifier. The method of attack4

is based on a paper by Paschke. Here again one-dimensional confined

electron flow is assumed.

The analysis is begun by writing one of Maxwell's curl equations:

D
vxH = Jc +1 (53)

When the divergence of both sides is taken this becomes

7.V xH H = c + ai_(V.D) = (54)-- at

since the divergence of the curl of any vector is always zero. From
8i

the assumption of confined flow ' Jc Z " Also, from Maxwell,

7 D=p and Equation (53) becomes the well known continuity equation,

"" 
(55)

- op 3

A new variable P, the polarisation, is now defined such that j = a
DP s

and - = p in a confined flow electron stream. It is necessary to
-Is

show that P is consistent within Maxwell's equations. This is done

by inserting the definition of P into Equation (53) which then becomes
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I-- bPZ bD (D P . ) (E o-P k) (56)--at - _-

Again taking the divergence,

8ap, a
• v H -O at 7 .D --- J P- ) = 0 ,(57)

- St --

which establishes the validity of the variable.

An examination of Equation (56) shows that the variable P is

actually the negative of conventional polarization. This choice was

made because the conventional polarization vector points in the direction

of motion of positive charge and electron motion is of primary interest

in klystron analysis.

The equation of motion for confined flow electrons in an axial

magnetic field is given by

d
dt -gi E5 ~E .(58)

Since the perturbation velocity ^z is a function of both space and

time, Equation (58) can be written as

,9(z  ru Z  P.
+ (uo + iZ) -y-- = Y E (59)

Expressions for 9 z and %i must now be obtained in terms of P

This is done by making use of Maxwell's divergence equation 7 • Z

After taking partials and rearranging

&o "- + ao -- + -t P = -- (60)

When the transverse geometry is finite, the transverse electric field
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components exist and cause a reduction of the longitudinal electric

field for a given polarization. The parameter m is introduced to

account for this reduction:

P z = 4- +m . (61)

Taking the partial with respect to a and again with respect to t

results in

8 * a ( + 62i- -- ITo \sr- Su) . 62

From Equations (60) and (61) and the definition of Ps Equation (62)

reduces to - 8 J =a p , which is the continuity equation. This
85 St

establishes the consistency of the definition of m. Solving Equation (61)

for E a gives

E a go.- . (63)

The convection current density in the beam is the product of

charge density and velocity. Symbolically,

J3 + 3 = (P0 + p) (u° + ^s) (64)

where the d-c current density Jo = P u . Solving for 'u gives

OW , - s " OPu O ,u (65)
p o+p

In terms of P. . Equation (65) is

S Ops  (66)

p0 +'-
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The derived expressions for 9 and S are now inserted5 5

into the equation of motion, which, after performance of the indicated

operations, transforms to

Cp2p 
2 /aOP a P OP OPBP Nz_+ z +j o z z- + + T 8 o-r --

u 6 ) a 0 ; e IS w

OgU hdq =0 0 (67)e

t + u + ( p (Pz-i ) + 06-

z- 0 (0z 0} + 1

Equation (67) is a npnlinear differential equation which, when solved,

yields expressions for polarization and, indirectly, velocity as functions

of time and space. As previously stated, a knowledge of the polarization

and velocity defines completely the state of the beam. A third order

theory will be considered and hence terms of higher than third order are

to be neglected. Under these conditions Equation (6?) becomes

O 2P z 2P 5  1 2 P 2
- u o(P M)+

as 2  0js~ u0 
2  at 2  ~p - j0 u 0

2 2

OS a2P PF O8Pz OP 5  OP P

+ j+ ±>o " } (Pin) = 0 . (68)
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For very low power levels, all but first order terms can be

neglected. Equation (68) would then consist of only the first four

terms and would lead to the well-known space-charge wave equation

for small signals. A third order solution however, requires that

P z P + Pz2 + Pz3

z Zl Z2 z3

m m 1 + m + m . (69)

Substituting Equation (69) into (68) and separating terms into first,

second, and third order, results in

f + f + f =0 , (70)
1 2 3

where

f a P Z ZP Zl 1 PZl 2

Is u u0  at z + ql P8i

a2Pzz a PZ 1 a2Pz

2P92  1 P 5 2 0 s2P

+ z aa 2Psl aP I a Pst 8Pal

0: u 0 0  q2.zatz x

2 2
SPa5 1  OP 51  8
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8 2 8 2Pz3 1 Pz3 + P Pf3 :'"- + - + +- Bt
W- u 8z-t *7 2 *q3 z3z 0 u at

0

2 SP OaP Z2+ P Z2aP ZI aP a Pz pz
2 i z2 :P2 zi Pz2 82zl 8 Pzl 8 2P2h

+ -- -I- 8 - = MEWt -F 7 1 E

02 (08P z 2 at atp Op 2)

z a ( _zl :Z aPZ2 azI apzI a2Pz2  aP Z2  8 Pz

2 2 2

+ 1 (OP 1  (oP ) Pz a~r OP ZI aP 1  /ap\Z2
TZz 2 8tt azE -ZT-F + 151

/aP SP 2
+ I 22 Pzl + PZ zl + 3,,0u 0 z= 0 0 -z - -

The effects of the transverse fields, represented by m, resuit in a

reduction of the plasma frequency and are accounted for in Equation (70)

by the substitution of Pqn for Ppn"

There are many possible solutions to Equation (70), the simplest

of which is to set the terms of equal order equal to zero. That is,

f, = 0 , (71a)

f = 0 , (71b)2

f = 0 (71c)
3

Although this may appear to be a trivial solution, it is sufficient to

satisfy the boundary conditions.
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Equations (71) now represent a system of linear differential

equations, all terms in each equation being of the same order. The

necessary procedure is first to solve E-uation (71a); put the solution

into Equation (71b), solve it, put the solutions to Equation (71a) and

(71b) into Equation (7lc) and solve it. The total solutions PZ! +

P Z + Pz3 must satisfy the boundary conditions. This approach

to the solution of a nonlinear differential equation is known as the

method of successive approximations.

From Equations (66) and (69), the velocity terms are found

to be

"P 1  O + u - , (72a)

" o z2 =t + Uo =6 + ts z I = (72b)

8Pz3 8P0 a, 8P Oz
"Po. T " -- 4 uo  = + C( S + q "1 (72)

Velocity Modulation by a Sinusoidal RI Voltage:

A gridless gap klyetron cavity of width d, and center at

s - 0 is assumed to be modulating a beam of d-c velocity u0 0 .

The effective r-f voltage across the gap is determined from

Go

Voff : f Czd, . (73)

After expanding in normal modes, the fundamental component of

electric field for the first order space charge wave mode may be

written as
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E cz :T 1A(z) + K2B(z) Jo(P tlr) con (4 + (74)

where all terms are defined in the previous section and solutions are

to be found at r = 0. The limits of integration in Equation (73) may

be taken as -1. 65 d to +1. 65 d since the amplitude of the field has

fallen essentially to zero at these limits. After substitution of

Equation (74), the effective voltage is

1.65d

V eff = f 4 [KIAz + K2B(z)] Cos (Pez + 40+ o) dz

-1. 65d
(75)

where t is the time an arbitrary electron passes through the center
0

of the cavity and wt L- z + (t in the limits of the cavity. The
e 0

integration is a simple but lengthy process and the result is

Vef f = C vI cos(( ° +) . (76)

The constant C1 -s given by the somewhat formidabl.e expression1

C= 2 d sinr/2 (K1 a° + K2 b)
e

+ 2+ = (D5 sinr/2 + D6 cosT/2) (K a2 + Kb22

e 
12 2

Z+sinr/2 + D coo -r/2) (Kla 4 + K b4 )
P (D3

+ (D sinr/Z + D cos T/2) (Kla + K b
P d 6 2 Ka+ b 6 )

(77)
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where r/2 a 1.65 Ae d, aK and bK are the coefficients of A(z)

and B(z) respectively, and

6 4 2D = (r/2) - 30(r/2) + 360(T/2) - 720

ID = 6 (T/2) 5 - 120(-r/2) 3 + 720(T/2)

D 3 (T/2) 4  12i(T/2) 2 + 24
3

D = 4(/) - Z + 4(r/)22 44

D 5 (T/z) - 2Z
3

D 6 =2(r/) /2)

The effect of the constant C1 is to reduce the problem to that of an

infinitesimal gap located at z = 0 and modulated by an effective

voltage of magnitude C1 lvM
From conservation of energy,

dz. ,12
u (l + C coslwt +4) , (78)

1 o
3TI~~ z 0

0

where a is the depth of modulation V- . For normal klystron
0

operation Jl < I and Equation (78) can be developed into a series.

Omitting terms of higher than third order results in

ds I (C 1 )2 aC I(c)2 )C '''
t 00 " 0 --Tr- +  + !---Jco( + )

(aC )2 (al3

(C 2 (scc 1 )3
1 c Cos 2(wt + ) + -6- cos 3(wt ° +4). (79)

-36-



Equation (79) and the fact that at z = 0; P = 0, are the required
Z

initial conditions for solution of Equation (71). Equation (71a) is

solved by letting P P (z) ejwt + P* (z) •"je t and separating
zi Z1 zi

it into the two equations

d2 Pz (z) dPzl (z)

dz 2  e dz ql -e)zl(Z) = 0
dz1

d2p* (Z) dP * (z)
,, 2P ZI +( ) P * (z) --0 (80)

dz 2  a J 2e d + qi- " re zi

These two equations are of the form

d zy.)+ I 4 +y y(x) = 0 (81)
dxZ X 2

which has a solution of the form y(x) = a1 e + bI  , where

-l + 4/,i - 2 "" -4V"/ 4
1 2 , and a2 - z . After applying

Equation (81) to (80) and using initial conditions to determine the

arbitrary constants, the solution to Equation (71a) is
aC1  3(aC1 )2

Pzl = W sin Pqlz cos (t - PeZ) . (82)
ql

Having solved Equation (71a), the result is used in Equation (71b)

which is of the same form as Equation (71a) except for the driving terms

provided by Equation (71a). Since the equations are linear, superposition

can be used to handle each driving term separately. The arbitrary

constants are again determined from the initial conditions. Equation (71c)

is then treated in the same straightforward manner. The sum of the

solutions to Equations (71) yield the desired result, which, after a

great deal of algebraic manipulation is
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If velocity is desired it can now be computed using Equations (7Z).

Many of the higher order terms in Equation (83) can be

neglected as long as 1 and < 1. Under these con-

ditions Equation (83) reduces to

3 aC1
P z W " l T- sin Pql (Z) cons(Wt - Z)

Wqi

+ "- y } --. (1 - cos qli) cos Z-Iat - z

ql

+ 0 C- 1 - -- (3 sin z - sin 3 P z) cos (wt - ez)
23 q q1

3
3- 0(6C) 2.. (3'sin~ql" -'in 3 ql5) cos 31wt - ez)

ql

(84)

Current density is simply the negative partial time derivative

of P . From Equation (84),
S

- Ii sin qlz sin(wit - Pez)

o ql

+ .1 / W.. (SC - _12 (1 - coS2P z) sin 2 (wt - PeZ)

Z_ (K2  3 13 sin q z-sin 3 P qz) sin (wt -P1

9 N3 (&l3
( ) (3 sin Pql - sin 3P qlz) sin 3(wt - Pz )

(35)
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Equation (85) is a somewhat surprising result since it indicates

that the main contribution to harmonic current density comes from the

fundamental beam disturbance and the harmonic spatial distribution is

controlled by the fundamental reduced plasn,a phase constant.

The question arises as to how large the amplitudes of the

harmonics can get and still represent good approximations to the exact

solutions. To extrapolate to higher harmonics, saturation effects

are neglected and the 'quasi-linear' case is considered. The maximum

current density appears at 0 z I - and for quasi-linearity is given by
qi 2

jz WiO 2 3 WOOJ~q.. = ° y sin (wt + V sin2(t- 8 y3 sin 3(wt o- )

0ql ql qi
ql 2 (86)

where y = - 1 This equation appears to be the first part of
W0ql 2

the infinite series

n
I / Z 2 n n(t-- woo (87)Iql s Z 2 'q

lnx
Using the ratio test and realising that x = , the series is found to

be absolutely convergent for y < _ If 0. 736. Equation (85) appears
e

to be a valid approximation for total current below the level of

y a 0. 736. However, this does not necessarily mean that the

fundamental current at aql a E is not correct beyond this level.

It is the limitation to third and lower order terms which prevents

the prediction of the saturation behavior of the harmonics. The power

series for the fundamental, from Equation (85), is
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0 ,- I V +...) - a (88)

ql 2

This series converges much more rapidly than the one in Equation (87)

and at the saturation level, easily shown to be y = J the second

term is only one-third of the first term. At any other value of qlz ,

saturation will be reached at a different y value and, if desired,

the values of y required for saturation at any q1 z can be computed.

Figure 3 shows plots of current density versus distance for

the fundamental, second harmonic, and third harmonic at y = 0. 73,

the upper limit of validity of exact harmonic determination. In

Figure 4, the fundamental current density is plotted for various values

of y. The shift in the current maximum from the quarter space-

charge wavelength has been observed experimentally by Mihran

using a two-cavity klystron with a movable output cavity.

If the equations which have been presented are correct, they

must reduce to Webster's ballistic equations which are known to be

valid near the excitation plane where space charge effects are

negligible. In Webster's theory the magnitude of the total r-f

current density is given by

sl z 2 n ; z = 2 ETJZ nx) (89)

T_ E n n~
0

Since space charge effects must be negligible, this requires that

P q1Z *< I , that is, the region under consideration is one in which

electron bunches have not yet formed. At this point sin P ql' V Z =

W z. and the magnitude of Equation (85) is then
U
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= x+x 1 3 +9 x3 
(90)To

The amplitudes of the current densities of frequencies n0 are given by

n i = z x 3  (91a)

n~Z = x22 = = (91b)

n =3 : LI = 1x 3 (91c)

From Equation (89), by developing the Bessel functions into a power

series for small arguments,

nx* 2

-- 1 = -+ .. . (92)

As expected, Equations (91) and (92) are in good agreement.

If the next term in the Bessel function expansion is introduced,

Equation (91a) would become

~ZI 1 3 1 5-+- - ... • (93)

This indicates that if higher than third order harmonics had been

considered, the shift in the current maximum with increasing y

would be accompanied by an increase in amplitude rather than the

slight decrease shown in Figure 4. This increase was present in

the experimental observations of Mihran5 mentioned previously.

If values of gap current are desired, they may be obtained

by multiplying the harmonic current densities by the beam cross-

s ctionalarea S and by an average of Jo2 (rtnr over the cross-sectional
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area. That is

I = S 2(tn r)+ 2 .r p)] 3 zn (93)

Output gap voltages are then given by the product of harmonic

gap currents and harmonic impedance where the impedance in this

case must include the effects of beam loading.
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CONCLUSIONS AND RECOMMENDATIONS

The analytic space charge wave solution shows that the

harmonic densities are made up of severa .:omponents. Each

harmonic has a small amplitude component which has a distrzibution

in space controlled by the harmonic reduced plasma phase k.onitant.

The mair components however, result from the fundamental

frequenc:, beam disturbance and therefore have spa ial distributions

controlled by the fundamental reduced plasma phase constant. In

contrast to Wester's ballistic theory, the total amplitudes are

related dir tctly to initial harmonic velocity modu lation. This

suggests that harmonic suppression may be accomplished by

cancellatin "f harmonic velocity modulation at the excitation

plane. The magnitudes of the harmonics can be accurately pre -

dicted up to a normalized drive level given by y = 0. 736 and the

fundamenial up to V = 2. 8 where - is the ratio of operating to

fundamental reduced plasma frequency multiplied by the ratio

of one-half the equivalent infinitesimal gap r-f vollag. to the

beam voltage. Choice of y determines the optimum drift tube

length for maxi,.um fundamental output.

Examinaton of Figure 3 shows that, at y = 0. 73, the

maximums ,-f a'l current density components occur at the quarter

space-charge wavelength, and a decrease in harmonic level can

be obtained only at the expense of the fundamental. At higher

signal evels, Figure 4 shows that the fundamental maximum occurs

at increasingly sh'rter drift lengths, while the harmonics exhibit
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dips in the region of the new fundamental maximum. It appears

that parametric energy coupling is taking place at some multiple

or multiples of the plasma frequency and that the ratio of harmonic

output to fundamental output can be decreased with an increase

in fundamental, by shortening the drift length between cavities at

some large drive. The ultimate results of using a drive of

y = 1. 63, for example, and a drift length qlz = 700 must be

found by solving the large signal equations in a computer.

The good agreement between theoretical prediction of

fundamental current density behavior and the experimental evidence

of Mihran 5 suggests that a fifth order theory, which would give

second and third harmonic saturation terms, would be of even

greater usefulness in controlling spurious harmonics. Magnitude

and direction of necessary changes in parameters could be pin-

pointed right up to the region of electron overtaking thereby

saving valuable computer time.
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APPENDIX A. SMALL SIGNAL COMPUTER RESULTS FOR THE SAL-36

The small signal equations were used to solve for displacements
6

and velocities in the SAL-36 klystron amplifier. To accomplish this,

an IBM-650 digital computer was used to solve the systems of equations

Si and 52. The Milne method of numerical integration was used and an

error of one per cent between "Predictor" and "Corrector" was tolerated.

In using this method, all initial variational displacements and velocities

were assumed to be zero, that is, v = p = w = q= 0.

Electric field configuration and limits were determined from

low-frequency measurements made in an electrolytic tank. Verification

at high frequencies was obtained by using perturbation techniques. 8

Polynomial approximations to the experimental curves were found by

employing the method of least squares and are

A(z) = 0.6000 -2. 1413 X 102za +2.7524 X 104z 4 - 1.0415 X 10 6z 6

B(z) = 0.1260 -2.9369 X 102 z + 1.3899 X 10 5 42.5014 X 107 z6

+ 1.5467 X 109z8

The field strength falls essentially to zero at z = -1. 65 d and

z = 1. 65d where a = 0 at the center of the cavity.

Solutions were begun at z = -1. 65d and carried in steps of

0. 001 meters to a point one wavelength beyond the circuit field limit.

The program used is shown in Figure 5 and curves of results are

given in Figures 6 and 7. As mentioned in the text, the results must

be modal analyzed before they can be used as initial conditions in

the large signal case.
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Constants required to obtain solutions are

* -l
- Z = - 3. 4873 volt

mu
0

2
qz -l" qz -5.4277 meter

u 2

0

y = cos( z +4) cos 31.2z (4 0 for first cavity)
e

4 = sin (P.z+) = sin 31.Zz (4 = 0 for first cavity)

3

IV =i 3 X 10 volts

d = 5.08 X 10 "2 meters
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APPENDIX B. LARGE SIGNAL COMPUTER PROGRAM FOR THE SAL-36

This Appendix has been added to show, in some detail, a practical

application of the large signal equations up to the point of actually finding

solutions using a digital computer. In this example a wavelength in wt

is broken up into twenty electron discs, each disc being eighteen degrees

wide (80 = 18 degrees). The differential equations then apply to the

ith disc and i varies from zero to twenty. The modified versions of

the required equations are then:

O, W. Eczizo Eczi (26B)(1 + wi) -iY- = - Z--e . ~ P(6B
V"P oV P

aei W..

.(29B)sy I
dIn i 1o2( t r ) +j 2(trep]9 (Y)

Real o [ 1  tn ep) + i2 )] zn _A
dY wP d 0

e

20

Z cos (nOi ) cos(nY) - sin(nOi) sin(nY)
i=l1

ImagdI n i 0[jo 2 ( tn re) + j1 2 (Ptn r ep ) ]  zn(Y)
dY wped 0

20

Z sin (n0 ) cos(nY) + cos (nO sin (nY) (52B)
i=l

The equation numbers given here refer directly to the derived equations
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in the text. Thus, Equation (52B) is the modified version of Equation (52)

and has been broken up into real and imaginary parts to facilitate solution.

In Equation (26B)

c = 3 'AM dVn coo (6 + nY + n8) . (32B)

na

The constants in this equation are n and d, and Y is the independent

variable generated by the computer; L'zn (Y) is determined from

Equation (39) and the values of A(z) and B(z) are given in Appendix A,

remembering that Y = P z can be used to convert to A(Y) and B(Y).
e

In all cavities except the first, an estimate of IVnI and bn must be

made, and convergence to the known harmonic impedance Zn is

required a* explained in the text.

Evaluation of lszi is slightly more complicated. In modified

form,

OW W 2
E* 5 i= 24 ZVope 0 [F(9j 8) + GO j- 9i01 AO (49B)

W j=l I +W j

In the lossless case to be considered here, 6 and w are real andn n

the expressions for F(0 - 0i) and G(0. - 0i ) become

Fle - i} j 1 Ji nlI i(4B

3 52

o(-O e i = n sin n(e -0.) (4913)

2
6 is a function which has a maximum value of unity which it approaches
n
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at extreme high-frequency operation. When Sn = 1, the F function

becomes a sawtooth which can be evaluated by direct summation. Since

6 2 is an increasing function of n, it is much easier then to make an

summation of tha series (I - 6 n) which represents the differencen

between the actual function and the linear sawtooth function.

Symbolically,

5 2Z sinn(8.- " 0n
sin n(e.-il = n n - n sin n(Oe).n n n n

For the particular case of the SAL-36, the summation was carried

out using twenty terms and the resulting function F(e j-i) is plotted

in Figure 8.

The series representing 0(j-8i) converges rapidly as it

stands and a plot of this function, after summing over twenty terms,

is also shown in Figure 8.

Polynomial approximations to the curves in Figure 8 were

written using the method of least squares. Finite disc widths were

also accounted for in arriving at

F(0 - i) = ak ej-e i)z0  for I (e ,
k=l, 3, 5 kj

L].E* 4-Io-~ k 2W
.(O 10 ki , a k [( (8 j6 J 19~ for I(Gj-0,)l >

k=l,3,5 for

bk5 2

G(O -8 b 0 -0 )2 for1 ( -55-
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G= k = bk I(ej-e,)I) g] kfor I (e. _9~ > 2

All other terms required to solve the equations are constants

of the tube and its operating conditions, and it remains now to determine

the initial conditions from the small signal solutions.

Since only the fundamental was considered in the linear portion

of the tube, the constants KIn and K2n of Equation (38), become

K 1 and K 2. The small signal computations have given

P. [ -v ( z ) + jw(zjj e j(Wt- Pe-)

uz  ilWt - P~eZ)
- [_ z + eqz] j6 t~z

Realizingthat 0 I u W, and 0 0e + , the small

signal results combined with Equation (17) and the constants K 11

and K of the modal analysis result in initial conditions given by21

e ° 0 ae + Pe a I11 [va(z) cooe - wa(z) sin()

+ K2 1 [(vp(z) cone - wp(z) sine) - (va(z) cose - wa(z) sine)1

W = K1 1 (Pa(s) coo0- 'q(z) sine]

+ K2 1 [(pp(z) Cos - qP(z) sine) - (pa(z) cooe - qa() sin )].

These are evaluated at the arbitrary starting point of z = 0. 2847 meters

which is normalized to Y = 8. 883 radians.
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Summary of Procedure:

The small signal equations were solved from the limit of

the circuit electric field in the first cacity to the point Y = 8. 883

radians. At this point they were modal analyzed and became initial

conditions for the large signal solution which is to be carrieu

through the remainder of the first region to the limits of the

circuit electric field in the second cavity. An initial estimate

of induced cavity voltage (magnitude and phase) is made and in-

serted into the equations. The solution then proceeds through

the circuit field region and harmonic cavity impedances are

computed from the results. If the computed impedances do not

agree with the known impedances, new estimates of voltage are

made and the solution is again run through the circuit field region

of the second cavity. This continues until the impedances agree.

At this time the solution can be continued through the second

drift region until the circuit field limits of the third cavity are

reached. New estimates of voltage are then made and the con-

verging procedure followed again. The final value of I

determined in this way is the current which flows in the output

circuit. Of course, the entire process could be continued for

klystrons having more then three cavities.

A schematic of the SAL-36 is shown in Figure 9 and a

large signal computer program is presented in Figure 10.
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The necessary constants and initial conditions are

v 98. 3 X 10 3volts
0

S. = 5275 X 10 9second-1

u = 1. 69 X 10 8meter second
0

p = 1. 70 X 10" coulomb meter -
0

P = 31. 2 meter
e

w 1.645 X10 second-
p

d = 5.08 X 10- meter

-2r 1.778 X 10 meter
ep

-1 28. 3 ampere
0

AG2 radian

~tn = 65. 5 meter 1  n = 1

79.1 meter- n = 2

87.5S meter n = 3

K In 1.175 n =1

= 1.253 n= 2

= 1.33 n =3
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K 2n 2.22 n= I

- 1.945 n =

- 1. 67 n= 3

a -0.06085 k 1
k

- +0.03074 k = 2

- -0.00411 k = 3

b k -0.04901 k = 1

- -0.01745 k = 2

- +0.00227 k = 3

V = 3. 909 X10 volts n=z1
n

Initial estimate

- 0 n =2,3

* = -9.82 n I
n

Initial estimate

- 0 n = 2,3

= 0.310 n z

- 0.545 n= 2

-0.690 n= 3

q 2 0.488 n=1I
n

- 0.345 n = 2

- 0.200 n = 3
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0o2 (ptn rep + 1 2 (tn ) = 0. 7135 n 1 1

0.606 n = 2

0. 548 n = 3

g 'zi (Y) = 0. 9847 - 0. 9283(Y-17. 435)2 + 6.670 X 10'(Y - 17. 435)4

-3 6 38- 7.348 X 10 (Y - 17.435) + 3.825 X 10 3 (Y -17. 435)

'z2(Y) = 0. 9969 - 0.8625(Y-17.435) 2 + 6.493 X 102 (Y-17.435) 4

- 6.690 X 103(y-17. 435)6 + 3. 351 X 10 3 (Y -17. 435)8

RL 3 (Y) = 1. 0084 - 0. 7964(Y - 17.435)2 + 6. 314 X 10 2 (Y - 17.435) 4

36 .3 8- 6.031 X 10 3 (Y -17.435) + 2. 877 X 10 (Y -17.435)
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Initial Conditions

0 
A

Disc Number 0e w

1 0 0.1239 -0.0118

2 0.3142 0.4224 -0. 0108

3 0.6283 0.7243 -0.0087

4 0.9426 1.0175 -0.0060

5 1.2566 1.3038 -0.0029

6 1.5708 1.5900 0.0005

7 1.8849 1.8797 0.0036

8 2.1994 2.1625 0.0067

9 2.5132 2.4504 0.0092

10 2.8278 2.7489 0.0106

11 3.1416 3.0421 0.0117

12 3.4562 3.3563 0.0115

13 3.7698 3.6687 0.0101

14 4.0846 4.0108 0. 0075

15 4.3981 4.3459 0.0042

16 4.7124 4.6984 -0.0002

17 5.0264 5.0527 -0.0042

18 5.3414 5.4035 -0.0077

19 5.6547 5.7299 -0.0102

20 5.9698 6.0685 -0.0117
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ABSTRACT

This paper considers aspects of electron motion in cylindrical

electron beams focused by a magnetic field and moving within a cylindrical

drift tunnel. The motions of electrons in such beams are of particular

interest in the study of the operation of klystron gerierators of microwave

energy.

Fundamental equations for the motion of electrons in magnetically

focused beams are developed and combined with the Maxwell equations%

The solutions obtained are ap1lied to the study of the conditions existing

in perturbed magnetically focused beams. Small-signal solutions are

developed for both relativistic and nonrelativistic cases. For the special

case of the Brillouin beam modulated by a gridless gap, large-signal

solutions are found. Equations suitable for the study of the modulation

of cylindrical magnetically focused beams by gaps are presented.

Application of the large-signal solutions to the problem of harmonic

generation in Brillouin beams iE considered. It is found that it is possible

to adjust the beam conditions so that harmonic generation will be enhanced.

Application of the large-signal solutions to the problem of current saturation

in klystrons is described, and methods of reducing the output of unwanted

harmonics are considered.
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INTRODUCTION

In recent years there has been considerable interest in the production

of high-power microwave energy. In conjunction with this interest con-

siderable attention has been devoted to the theoretical analysis of the operation

of linear-beam microwave tubes at high-power levels. Much of the analysis

has been devoted to the study of the behavior of linear electron beams

excited by a high-level of modulation.

This paper considers the motions of electrons in magnetically

focused beams. Much attention has been devoted to the small-signal analysis

of perturbed beams focused by magnetic means, but thus far no consideration

has been given to the large-signal behavior of such beams. A large-signal

solution, if it could be obtained, would furnish us with a better understanding

of the behavior of microwave generators operating at high-power levels.

It is the fundamental aim of this paper to present an analysis of the large-

signal behavior of the Brillouin beam and to state some applications of the

large-signal analysis to the operation of microwave klystrons.

Basic to the analysis of the motions of electrons in beams is the

combination of Newton's and Lorentz's laws in the equation of motion:

dv
m-a- = e(E +vxB) (1)

In the Eulerian description of the motion, Equation (1) is rewritten

in the form
8ve v(v~v) = e E xB



The velocity v has two components: (a) the d-c velocity produced

by the focusing system used to align and accelerate the electrons after they

leave the cathode, and (b) a component which will be produced by the

modulating structure. We shall denote the d-c part by vo and the part

consisting of perturbations causes by the modulation by ''. We refer to

vo as the d-c velocity, since it does not normally vary with time.

We may rewrite Equation (2) as

t + (vo +  F-) v + 7 )] (E + v x B) ,(3)

where 7 = e/m. For the moment, let us assume that v has no spatial-o

variations so that vv = 0. Then Equation (3) becomes:--o

ff +o v v + . 71 )=(E+ v xB) (4)

If 1v1 >> 1vI then the last term in the left-hand side of Equation (4) may

be neglected. This is the small-signal assumption, and is usually made in

the study of the operation of a device at lw-power levels.

Equation (4) involves two types of co-ordinates, the time, and the

set of position co-ordinates used to fix the location of the electron in space.

The first term on the left-hand side of Equation (4) accounts for the explicit

change of velocity with change in time at a constant position. Of course,

the electron will not remain at a constant position, and it is the purpose

of the last two terms on the left-hand side of Equation (4) to account for

changes in the velocity of the electron caused by dependence on the position

co-ordinates. Change in the position co-ordinates may, of course, be

caused either by the d-c velocity of the electrons or by the velocity resulting
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from the perturbations. If the disturbance is small, the change in position

resulting from the velocity associated with the perturbations will be small

compared to the change in position resulting from the d-c velocity, and

the last term on the left-hand side of Equation (4) may be ignored.

However, if the beam is strongly excited, the last term on the left-

hand side of Equation (4) becomes important and may no longer be neglected.

The physical process that produces this effect may be described as follows:

The excitation produces motions o' the electrons that are not uniform in

space, and as a result, electric and magnetic fields are set up within the

beam. For small values of excitation, the values of electric and magnetic

fields are determined by the linearized form of Equation (4), the form with

the last term on the left-hand side neglected. However, these electric

and magnetic fields in the beam will stimulate further motions, and, if

the values of excitation are large, these new motions must be accounted

for. This may be done by using the nonlinearized form of Equation (4).

Just as the equation of motion is nonlinear if the excitation is high, the

beam also is nonlinear.

Some of the theoretical analyses of electron beams can now be

considered in the light of the preceding discussion. The first theoretical

analysis was performed by Webster using a ballistic approach. Webster

analyzed the motions of an electron beam excited by a gridded gap, neglecting

the effects of space charge, and was able to deduce an expression for the

efficiency of a klystron. His method, however, suffers from the defects

that no space-charge effects are taken into account and that the electro-

magnetic fields outside the excitation region are ignored. Thus the results

can validly be applied only to beams of very low density in which the electro-
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magnetic effects are small in comparison with the ballistic effects.

In an effort to overcome the defects of the ballistic approach,

Hahn 2 and Ramo 3 combined the linearized form of the equation of motion

with the Maxwell equations. They found that the electron motions should

have a wave-like character, periodic along the beam. Their solutions

have been termed "space-charge waves. "

Both these methods of analysis assumed that the electrons were

confined to move in a direction parallel to the axis of the beam. This

is approximately the case when the magnetic field used to focus the beam

has very large values. In actual devices, however, the values used for

the magnetic focusing field are close to the minimum possible value for

stability of the beam, in order to save space and weight. and to reduce

the cost of the focusing system. In such cases, much of the electron

motion will not be in a direction parallel to the axis of the beam. There-

fore we must examine some of the methods used in the analysis of the

properties of focusing systems and the characteristics of the high-frequency

behavior of magnetically focused electron beams.

Conditions for the stable focusing of electron beams by magnetic
45

fields were first investigated by Brillouin, and subsequently by Wang,

6 - 78Samuel, Brewer, and Dow. 8 Underlying these analyses is the assumption

of laminar flow, which requires that the paths of the electrons not cross

each other. This assumption is made necessary because the functions

that describe the electron velocities must be restricted to being single-

valued. Laminar flow is not achieved in practical beams, as has been

demonstrated by Harker, 9 but there is no reason to believe that it is not

a good approximation, if the thermal velocities of the electrons emitted
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from the cathode are small with respect to the accelerating potentials,

which is usually the case.

It is also assumed that the electrons leave the cathode with zero

potential, energy and velocity. This assumption is also valid, and when

taken with the assumption of laminar flow, implies similarity of electron

paths as the electrons move along the beam.

The authors cited assumed that the electric and the magnetic fields

associated with the focusing system were axially symmetric, and that the

charge density was uniform at all points in the beam. Only careful cathode

and gun design could approach these conditions in practice, and these last

assumptions are probably more restrictive than those previously stated.

Wang 5 has shown that the angular frequency of rotation of electrons

about the axis of the beam is strongly dependent on the amount of magnetic

flux threading the cathode. If no magnetic flux threads the cathode, and

if the other assumptions mentioned are valid, then we have the focusing
.4

conditions specified by Brillouin:

i All electrons in the beam will have an angular frequency equal

to the Larmor frequency, wL, where wL = ,B/2, and B O

is the strength of the applied magnetic field.

2. The radial velocity is zero, the axial velocity is everywhere

constant, and the charge density is uniform.

When the Brillouin conditions are satisfied, the value of B is the smallesto

that may be used for stable focusing. If there is magnetic flux threading
the cathode, the value of B required to produce a stable beam will be

larger than the Brillouin value and the surface of the beam will be rippled
5

or "scalloped." Wang has established conditions fo" stability in such

beams.
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Now that we have reviewed the analysis of magnetically focused

beams in the unperturbed state, we shall briefly consider the analyses

that have been made of magnetically focused electron beams excited by a

modulating device.

The problem has been considered by Rigrod and Lewis, Brewer,

Labus, t 2 and Paschke.1 3 Their methods are all essentially the same:

The linearized form of Equation (4) is combined with the field equations

to yield wave-like solutions. However, they differ considerably in the

methods employed to calculate the phase constants of the waves, the dif-

ference centering around the problem of the boundary conditions to be

used at the edge of the beam.

Figure I shows the model for an excited magnetically focused

electron beam. The surface of the beam is rippled after excitation. The

boundary conditions are that Z the axial, and . , the radial electric

fields caused by the perturbation. be continuous at the edge of the beam.

However, the location of the edge of the beam is a function of the time,

and it is difficult to develop a method of matching the electromagnetic

fields at the constantly shifting boundary of the beam; therefore the beam

is represented by the model shown in Figure 2. The beam is not rippled

and the location of the edge is constant in time, with the ripples replaced

by an equivalent surface charge density p a or an equivalent surface

current J . This replacement permits equating of the fields inside and-s

outside of the beam at r = b.

The disagreement among the various authors centers around the
10

method to be used in computing the surface current. Rigrod and Lewis

use only the ripples in the boundary layer region to calculate the surface
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Figure 1. Model of Perturbed Electron Beam.
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Figure 2. Replacement of Rippled Beam by
Smooth Beam with Surface Charge.
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current, while Labus 1 2 and Paschke 1 3 think that the ripples throughout

the beam must be considered. In addition, Paschke uses a somewhat

different formulation of the equations of motion from that used by other

authors. In this paper the method of Rigrod and Lewis is used in for-

mulating the boundary conditions.

We have so far reviewed only small-signal theories of electron

motion. Work on the large-signal problem has thus far been restricted

to the case of the beam in which all electrons are confined to. move in a

direction parallel to the axis of the beam. Studies of the large-signal

behavior of the confined beam have been made by Paschke, 14, 5, 16

Romaine, 17 Blair,18 and Engler.1 9 The method used has been to combine

Equation (1) with the Maxwell equations. The resulting nonlinear differential

equation has then been solved by the method of successive approximation.

Beams of both infinite and finite geometry have been studied.

The work just .described has been restricted to the case of thin

electron beams, where beams of finite geometry have been studied.

Recently, Olving 2 0 has succeeded in deriving a nonlinear theory for the

thick, cylindrical, finite beam. His results, when applied to a thin beam,

reduce to those found by the other authors.

No work has appeared to date on a nonlinear theory of a magnetically

focused beam. The remainder of this paper will be devoted primarily to

the consideration of the development of a nonlinear theory of the Brillouin

beam.
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FUNDAMENTAL EQUATIONS AND ASSUMPTIONS FOR THE ANALYSIS
OF THE ELECTRON MOTION

The following assumptions are basic to the analysis:

1. The electric and magnetic fields associated with the motion are axially

symmetric.

2. The electron flow is laminar, and the initial velocity of the electron

beam is uniform at all points in the beam. The charge density of the

unperturbed beam is uniform at all points inside the beam and is zero

outside the beam. The charge density of the unperturbed beam will

be denoted by p0 .

3. The radial velocity of the electrons in the unperturbed beam is negligible

with respect to the other velocities involved in the problem. (Thus

any effects resulting from the scalloping of the d-c beam are not to be

considered. ) The axial velocity is small with respect to the velocity

of light.

4. The beam moves within a perfectly conducting drift tunnel and is excited

by a gridless gap in the tunnel. The drift region is free of any electric

and magnetic fields caused by the beam itself, except for the field of

the focusing magnet.

5. Thermal effects may be ignored.

The co-ordinate system used is cylindrical polar. Distances in

the axial or z direction are measured from the center of the modulating

gap. Radial or r-direction distances are measured from the central axis

of the beam. Azimuthal or 6 direction distances may be measured from

any convenient reference. The co-ordinate system to be used is shown in

Figure 3.
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Figure 3. Description of Co-ordinate System Used in the Analysis.

Assumption 1 requires that 8/8e = 0, which is reasonable, since

the structure surrounding the beam, and the beam itself, are presumed to

be axially symmetric. Assumptions 2 and 3 are never valid in real
21

structures, but experimental work by Gilmour has shown that beams

with properties closely approximating the ideal behavior assumed may

be produced. Assumptions 4 and 5 are justified in actual beams. Appendix

B gives an analysis of motions in beams where the initial velocity v5 0

is not much less than the velocity of light.

We are now ready to begin the analysis. In cylindrical co-ordinates,

Equation (1), the equation of motion, may be written

2
8 vr 8vr av v 0

-r" + V r- + vz r 17(E + voB " B)o (5a)

ya+ V + v By +9  v =v ( +vB VB) (5b)

av v avr + v -- = q(E + vrB0 -VBr) (5c)
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The subscripts to the quantities in Equation (5) refer to the components

in each direction.

We shall need one other set of basic relations, the Maxwell

equations:

.E P/ ,(6)

v B=o , (7)

OB
x_ (8)

or

8E 8B r (8a)
Tz = - ' Sa

8(rE 0 ) 8BZ (8b)

8E 8E r B e (80

and

Vx B = OPv +-I BE (9)
c

or

8B BBra E ,81BE e

- = -7 vr r( rr -- 9a)

(e .. { , ,-.(9b)°

-r rIe r z [r (rEr) - i (9c)
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The two sets of equations can be seen to be related to each other, since

the velocities appear in the Maxwell equations and the electromagnetic

fields in the equations of motion.

The first step is to consider the motion of the unperturbed beam.

The fields to be considered now are those caused only by the space charge

of the unperturbed beam in the tunnel and the focusing magnetic field.

As a consequence of symmetry and the assumption that there is no d-c

axial electric field in the drift region, we have

F ° = Bro = E = 0

(The subscript o will be used to denote steady-state quantities.) A

uniform magnetic field B = B 0z is assumed to be present to focus the--a o

beam, where is the unit vector in the z direction. Since v ro= 0

by assumption, and vzo is constant, the equations of motion reduce to

2"r o 0 7 ro + r B 0 (10)

where wo is the angular frequency of rotation of the electrons about the

axis of the beam. Maxwell's equations reduce to

a(rE ro) PO
r (Hla)

zo (1Ib),r- = 10 Po 0~

a rB = (I c)
F UT r0o oPo Vzo
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Next let us define

VCo

In simple space-charge-wave analysis, it is found that w is thep

frequency of oscillation of an excited infinite beam of electrons; then

2

Ero = r (13a)

Bzo = Bo 0 o w 0 r 2 (13b)

Beo = Pz (13c)
27 7c

In practical cases we may set

B zo =B

and

B 00-0

since v (< c. Now definezo

WL = - - "

Combining Equation (10), (13), and (14), we get

U°  W L(t ks) (1Sa)

where

km = - ( M)
ZWhi
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For the Brillouin case km = 0. We shall be concerned only with cases

for which wo = "wL(1 +km).

Equations (i5a) and (15b) express the conditions for equilibrium

in a magnetically focused beam. Physically, Equation (15) expresses the

conditions that space-charge, magnetic, and centripetal forces must add

to zero.

The motions of electrons under the influence of a disturbance can

now be considered. Let

V r- V r (16a)

Ve = r eo + V ( (16b)

v = v + v (16c)
Z zo z

Equations (5) may then be written as

r + 2k w V +v + v r 
7F m L - -rR zV~ W r

+  - + rt. - v B) (a)

-2k + + V - + , v(Ee ++Vo -VI

(17b)

d9V SV 87'd ' +7 -V =T T

' 1 sr r W(rwo + Vf B (17c)

where
d 8 8 (18): U +  z-o TI (S
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Besides the velocities and the electromagnetic fields, there is

another vector variable quantity which is of interest. This is the polar-

imation distance, which we define as the displacement of any element of

charge dq from its position in the unperturbed beam under the influence

of the perturbation. The displacement is, of course, caused by the

perturbation.

Let r, 0, z° be the co-ordinates of an electron before any

disturbance takes place, Then

r = r +Pr (r, 0, z,t) (19a)

P 0 (r. 0, z, t)

0 = 0o + WOt + r - (19b)

z = z0 + vzot + Pz (r, 0, z, t) . (19c)

At a time t = At,

r + Ar = r + P r(r + Ar, 0 + A6, z + Az, t + At) , (Z0a)

0 + AO = 60 + o(t + At) + P(r + Ar, 0+ AG, z+ AS, t + At) (Z0b)r+Ar

z + Az = z0 +v zo(t + At) + Pz(r + Ar, 0 + AG, z + As, t + At) . (20c)

Substracting Equations (19) from (20) and letting At approach

zero, we find:

OP
Vr r + (V • V) P , (Za)
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ep
v5 vo+ 50 + (v V P (21b)

ap p
= rw + ee e2c

0  -It+ (vv)PO r

We may now solve Equations (21) for the velocities:

V( = / ) + )o ' (ZZa)

v o (Zb)

v0 =rw0  ap a ap\/P p p

- -+ l Z,. + 1 r  I j

o (VZO Mr- Tt- 81-r

1- --1 - F

There are now two possible methods of obtaining a nonlinear dif-

ferential equation that can be used to describe the properties of the motion.
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We can work with the velocities directly or we can substitute Equation (22)

into Equation (17) and use the polarizations as the basic variables in the

problem. For our purposes, we shall find that it is easier to work directly

with the velocities. Appendix C gives the nonlinear equations of motion

with the polarizations as basic variables.

In order to solve Equations (17) in conjunction with the field

equations, it will be necessary to assume that a solution is possible by

the method of successive approximation. We assume that we can write

= + 3 +V 3 + , (23a)

I -i 2 -3
-'=-- + + 'S + .. (23b)

- 1 =2 -3

Each of the terms in Equation (23) is presumed to be less in

magnitude than the one preceding it, i. e.

I- I >> I ,I >>  I -- I ..

The quantities are presumed to depend on a parameter e < 1,

so that the series will converge. The method of successive approximation

is a means of finding the coefficients of the powers of c.

Physically, this is a justifiable method, since we expect that the

beam quantities will have a first-, second-, and third-harmonic part

and that the amplitudes of these will decrease with increase in the number

of the harmonic. The method is also consistent with Maxwell's equations

since these are linear and hence permit superposition of solutions.
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Substituting Equation (23) into Equation (17) gives:

n-i
dv n 2k+ ar,n -k +v ar,n-k VeOK vO,n-k2k m Lv +7(Vk Or + k 8z-r r )

-7 ,(E rn+ rw0 Bz - vyE 0 O) ,(24a)

dv0  8VkwV e\On 0en-k (v, n -k vrKvOn
= 2km wL rn + (rk **t*r +V v 1rT_+ r

- 7 (E 0+ v oB ) ,(24b)

=t rk + vzk 1 7 (EnrwB
kn- k= ) (4

The terms arising from v x B have been ignored on the right-hand side

of Equation (24). This assumption is justifiable for slow beams.

From Equations (22) we find that

dP 9

v 61 (25b)

vr dP~ * (25c)
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with

P = PI -P
.

2 + -P 3 +  (26)

as before. We may now combine Equations (24) and (25) to find

d2 Pr dPo
ri + 2km w = 7(Er + rwoBz, VzoBe,) (27a)

d2t dP 7

d P e 2kr wL ri (E + v B (27b)

dt ' mL d0I z l

d = r(E 1 - rcoBr) 
(27c)

dtzZ1 or

We notice that Equations (27) are much simplified if k = 0.

As stated previously, this is the case of Brillouin flow. We may, of

course, combine Equation (27) with the Maxwell equations and solve for

the case km 1 0, but the results are complicated and not easily manipulated

to obtain the nonlinear solution desired (see Appendix C).

The case of Brillouin flow is interesting from another standpoint.

The experimental work of Gilmour shows that the assumptions at the

beginning of this section are nearly satisfied for a well-designed Brillouin

beam. Therefore we restrict our attention to the Brillouin case. Another

reason that the case of Brillouin flow is of interest is that many practical

devices are designed so that very little or no magnetic flux will thread

the cathode, precisely one of the main conditions required for Brillouin

flow. Although Brillouin flow is an ideal state of behavior not actually

found in real devices, it is closely approached in many microwave generators.
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Appendix D shows that the results of the analysis for the case of the

Brillouin beam may be applied when the magnetic focusing field slightly

exceeds the Brillouin value.

We assume that Br = E01 = Bz 1 = 0. In other words we see if

a purely transverse magnetic solution can be obtained for the first-order

equations. Combining Equation (27) with Equations (8c), (9a) and (9c),

we obtain

(d 8z c at c (8(28)

This is the wave equation for the first-order solution. There are two

possible solutions for Equation (28);

Case I

P J(yr) e
zi 0

where 2

Y =-P + - -4
c c

Case II:

j( t -. B)
P l(yr) e

zI 0

where

2 2 2 2
= --. +Y =P - W +4

c c

For each case V E I = 0. This means that the transverse electric and

transverse magnetic modes are independent in the first-order solution.
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Other solutions of form P = f(r) ej p t are possible. We shall, however,

find that these are not excited.

We now wish to consider the relations between the fields at the

edge of the beam (but inside it), and the fields on the outside of the beam.

As discussed in the introduction, the electromagnetic fields must be con-

tinuous at the edge of the beam, which is the basis for the matching of fields

on the boundary. The continuity of the longitudinal electric fields at r = b

implies that the variations with z of the longitudinal fields inside and

outside the beam will be the same. This means that if E is known insidez

the beam, it is also known outside the beam, and using Maxwell's equations

one can also find E outside the beam.r

For the methods used here for satisfying the boundary conditions,

the beam must be replaced by an equivalent smooth beam with a surface

charge density; otherwise the boundary conditions are dependent on the time.

The surface charge density is given by

+£r

pS(z,t) =l IPo + P, (r, z, t) dr

b

where b is the unperturbed radius of the beam, and

Ar = Pr(b + ar, z, t)

In our case p, = 0, and so

PS = PoA r  (Z9)

To find ar we expand P.r (b+ Ar, z, t) about b by Taylor's theorem
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and 00oP terms of greater than first order in Ar. We have

Ar =Pr(b,z,t) + A [-a Pr (r, z,t)
rb

and

Ar P ir(b, zt) + Pr (bz,t) [ Prlr, zt)
I I r=b

The Dst term is clearly a second-order quantity, so

Ar P (b, z, t) (30)

Com j~irtning Equations (29) and (30), we have

PC = P P 4 (b z,t) (31)
0 r.

The baouadary condition may now be written as

( E zrE r + --

( ) = r Eo at r = b (32)zout Ez )in

| Both E and E outside the beam are found by straightforwardr z

solutij ,n of the Maxwell equations for free space, subject to the boundary

condiii:p.on that E must be zero at the drift tube wall and the drift tube radiusz

is a.I Wehavetwo cases:

Car~e k'A,

E zout = N (ra) J o(rr) - No(rr) Jo(ra)] ej(t- Pz)

where z
2z  _-
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Case B:

E zout = K(ra) i (rr) - I (ra) K (rr)J ej(Wt - Pz)

where

2 2r z = P -_
c

We now combine these results with Equation (32). There are four cases

for study, corresponding to combinations of the two sets of solutions in-

side and outside of the beam. We may tabulate these as shown in Table I.

Table I. Forms of Equation (32).

Fields Inside Fields Outside

Case A Case B
Case I I A I B

C Forms of Equation (32)
Case II II A II B Jfor study

Case I A in the table corresponds to the wave-guide modes. These

are the electromagnetic waves that would propagate if the tunnel were

considered as a wave guide partially filled with the beam. The phase

velocity of the Case I A waves is approximately equal to the velocity of

light. The propagation characteristics of the waves are slightly different

from the characteristics of waves propagating in a vacuum-filled guide,

but this is due, of course, to the presence of the beam.

Case I B has no solution under any conditions. There are thus no

modes of propagation corresponding to Case I B. Case II A has solutions

of form ej(Wt) e _ only. These are exponentially damped electromagnetic
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waves and correspond to wave-guide modes below cut-off frequency.

None of these cases is of interest. For case II B, however,

Equation (32) may be written as:

1 - 1 1 i ( b )  E LKo(ra) 11(rb) + Io(ra) Kl(rb)] (33)

- q 0 Eb K(ra) 10(rb) - Io(ra) K0 (rb)]

To derive Equation (33) we define

u U
0 0

or

0 Pe -+ q1

From the form of Equation (33), we note that wq < w Usually P

and we may let w << ; therefore, since
q

22  2 _
C

and
2

2 
2 2

c C

we may set r ! y A Pe Define A e a, B P eb, and R = r.

Then we can write Equation (33) as

R2 I I°(B) (0A) ]
1 B(B KoB0 ,, 0o(A )  14

where 2

p

P

Figure 4 plots R2 for various values of B/A.Figue 4 lotsR t
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Figure 4. Values of Reduction Constant R2

for Various Beam Geometries.

The quantity w is the reduced plasma frequency. In any finiteq

structure, oscillations of the electrons will not occur at the plasma fre-

quency, since the fringing of electric fields to the wall will reduce the

electric field acting on an electron. Therefore wq < w

p
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II. MODULATION BY A GRIDLESS GAP

We now seek to find a set of suitable initial conditions that could

be used to specify the modulation at z = 0. Since the modulation is pre-

sumed to be strong, we ignore the space-charge effects in the modulating

region. Let Ecr and ECz be the components of the modulating field,

and define the following quantities:

Vr V . va
r 

oz o v '-

T -wt R e Z = z

Now let
VI

0 I

be the modulation parameter, V I is the potential across the gap and V °0

is the kinetic voltage of electrons entering the gap. A simple energy

calculation gives:
2v

V zo

'Let
E E

cr CZe =ec =eo
ec pVa ec V ar e o

and
S0B 4wLH-- r-- --

e 2o



Let us further assume

n
gr = rn a

e-
n~n

9= i+ Z an

n=i

It may be seen that this is merely a successive approximation with a as

the series parameter C.

Now putting the foregoing quantities into Equation (5) and equating

terms in like poweri of a gives

+§ 7 r + H / (36a)

-B 8 t -or 7 _ .+ H) ,(36b)

aZt B rn t
-IT-+ - =Z- =  ecz (36c)

and for n =2, 3,

at t rr atrk ,n-kk 4 -k 4k
-IT- + - L 4~rn-k -I-+ 4 z,n-k -TZ - R

+ Z (On + H) 36d)
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TrL+_=r [7 kz,n-kT - 0rnL H)

(36e)

L :(4rn-k + 4z,n-k (36f)

Equations (36) represent a normalized form of Equation (i7) suitable4wo
for ballistic studies of motions in gaps. For the Brillouin case - + H = 0

and the equations assume the simple form,

a t r l a g r i I
T + = y e cr (37a)

a t Z 1 8 z l I
-M + -M = Z ecz (37b)

and for n = 2, 3,4,

rn + rn = _ + rk 8 Izk

-M + T r'  =  -( " r, n-k + tz,n-k '(37c)

atzn +t zna tz+ - - L (tr, n- kW + tz,n-k Z-7 (37d)

O'J. = ton = 0 (37e)
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It should be noted that only the solutions to EquAtions (36a-c) and

(37a and b) that result from the driving functions ecr and ecz may be

allowed; that is, no complementary solutions may be admitted. The reason

for this is that only the motions of the electrons actually produced by the

modulating fields may exist in a real beam, and allowing complementary

solutions would permit us to say that motions exist that arise spontaneously.

Similarly, no complementary solutions may be allowed in any of the other

Equations (36) and (37).

The fields Ecr and Ecz in the gap have been found by WangZ

but they are too complicated for convenient use in Equations (37a) and (37b).

We may, however, use a simpler method to arrive at initial conditions.

In the usual case,

e cr = Gr (R,Z) ejT

e = F (R,Z) e j T

Since the electric fields arising from electron motions in the gap are

ignored, we can assume that only electric fields of frequency w are

present. If

r -F (RZ) ejT

tzi -- F (R, Z) ejT

then

OF
r

OF
- + jFz = Gz
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and
ri ej(T-Z)fG ejZ dZ

zi = e j(TZ) Gz e j Z dZ

Further suppose that

F = f (R,Z) e j z

r r

- f (R, Z) e-j z
z z

then
00

fr (R, co) fr(R, -o) = fG r ej Z dZ

-a,

0000

fz(R, co) - fz(R.-c) = Gz

z 
0z

-a,

Now f(R, oc) is the value at the exit from the modulation region, and since

grl and 4 must be zero at the entrance to the gap, f(R, -oo) = 0

After modulation,
00

texit = e j ( T Z) fG z ejZ dZ (38a)

-O

CO

4rI exit = T-Z) fGr ejZ dZ (38b)

-00



We may identify the Fourier transforms with the gap-coupling coefficients.

If we apply the Maxwell equations to find Gz we have

R z + z + v 2
A 2W

; 8z C

z 2Since vZ << c , this becomes
zo

from which

Gz = J(KR) e-jKZ

00where -K 2 is the separation constant. The gap fields are given by

G= j/A(K) J0 (KR) e "j K Z dK
0z

where A(K) is chosen so that Gz satisfies the boundary conditions.

Substituting this in Equation (38a) gives

CZ exi t = ZwA(1) 1o(R) ej(T-Z)

At the edge of- the gap
E QV 0ej

z  = - jT

if d is the gap width; then

-Gz -
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where D = jed and

D/2 D

g 1 eI d Z = s i

-D2

s D Io(R) ,9in -, o eJ(T.Z )  (9
exit 0 JA(39

In a similar manner, we find

D

sin D lI(R) eJ(T.Z)

exit 0

We also require that the polarization distances be zero at exit

from the gap. The polarization distances are zero at entrance to the gap,

and if the gap is short, we may expect that there will not be an appreciable

displacement in the gap. These are the initial conditions for the first-order

solution We must now establish conditions for the higher-order solutions.

Of course, the requirement that the polarizations be zero will not

be changed. In addition, the a-c charge density is zero at the entrance

to the gap. Since v E = 0, there can be no density modulation in the-c

gap. Thus we must have p= 0 at the exit from the gap. Since there are

presumed to be no electric fields in the gap with frequency 2W or higher,

we expect that no solutions of form,

1 0(ZR) eZJ z

will be excited. The origin for the z co-ordinate is at the center of the
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gap as already indicated. The actual point at which the solutions to the

wave equation are matched to the initial conditions, however, is at the

point where the electrons have just left the influence of the fields of the

modulating gap. In practical cases this should not make any difference,

as the length of the gap will usually be short compared to the reduced

plasma wavelength.
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NONLINEAR ANALYSIS OF MAGNETICALLY FOCUSED BEAMS

For convenience we define

= T.-Z = wt- Pez (41)

The two waves are possible as first-order solutions: a fast wave,

P = A 1 I(R) e q Jo

and a slow wave.

P = A IiR) e q ej

If we follow the assumption made above, q << e , we may add these

two waves to produce the following solutions which match the initial con-

ditions at z = 0

Pz = M sin qz IoR) cos . (42a)

P = - M sin q z IR) sin (4Zb)
'y1 q

P = v = 0 (42c)
01 -01 1

Vzi = Mq oI (R cosPq z cos (42d)

v - = M:,Jq I 1 R) copqz in@ , (42e)

where D
a sin

M =2Dq 10(AT44
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Similar results have been described by Chodorow and Zitelli. 2 3

We shall now use these results to obtain the second-order solution.

From Equations (24):

d (v + Q + ( 0Bz 2 - v Bez) (43a)a-(Vr2 +r2) = T' (E r ?. +ozo V)

d - (v 2 + Qz2 ) = I (Ez 2 - rco B (43b)

where

= r2 = + v - , (43c)

dQ 2 = V 8 + Vz 1 (43d)

=t r1 79r vzI _T

The terms v x B are negligible, as assumed. As before we shall

assume that Bz 2 = Br 2 = 0. We now combine Equations (43) with

Equations (8c), (9al and (9c). Two equations result:

9)8E (_ 2 W 2 dEr 2  2 dQr2

and

1 a 8 dz2 i d2r I- -T - 7t - dt +  Ez

(C dt )

(1 8 F 8 a ) dEr 2 _ dQz
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These may be combined to yield

( a 2 2)

7 C C +w z

r r c ) (d+ zE

r U - T rt =tdQ rz + 2 8 2 \Md 2 ]

This equation has the same form as Equation (28), which was used to obtain

the first-order solution, except that the quantities on the right-hand side
2 2

are drive terms. If we take advantage of our assumptions, u2 << c

2 2
and , p< w we can reduce the foregoing equation to the form,

( a -') d- 2 dr2 + 8 d z2]S a 82 d2  2 [ a
dt r + + p Ez2 r zdz

(44)

This is the wave equation for the second-order solution analogous to the

Equation (28) in the first-order case.

The solution of Equation (44) is straightforward. If the approx-

imation, Pq << Pe' is applied,

8v v
zl ri

and from this fact it follows that

a dQ r2 a dQZ2

Thus Equation (44) becomes

4d 2  dQ 2
dt- + iE- = -(45)
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In a similar manner we find

i d2  dQr2
-+ 1a + E =W (46)

W dtP

Now dQzZ/dt and dQr2 /dt are calculated from Equations (42) and (43)

and Vr2 and vz2 are found from Equations (43), (45), and (46), giving

2 2 W R2 R 2R 3
vz2 = e- {[2(R) 1 q ( I 4 I sinp q sin2 }Z2 2 0 ' [-R" - 4]

(47a)

M2PR2R- 2R3Vr -r e q sin2 1 q-R sin P

r2 . -4R q 1-4RP

1 R cos 20 + 210 (R) I,(R) - J (47b)

The terms in sin p z are complementary solutions added to insure that

F2 = 0 at z = 0, as required by the conditions of modulation. The charge

density P. is given by

M e P Cos 2Pz 2 -4R 2

So 2 1 -4 - i o4R-

(R)I (R) 1 2(R) 2

K R - 1(R) 1 ~ R)'

+ 1"(R) R + 2 + 2 + 12 (R (47c)
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Using Equations (47c) and (9b we may formulate an equation for E 0 and

deduce v . It is found that v is a function of R and z similar to

Equations (47a) and (47b), but multiplied by the coefficient,

M2eoq2 2~ OLC vCz O

2

2 L zo
In any usual case, - - -- will be so much less than one, that for all

c

practical purposes we have

ve02 = E0e2 = BrZ = bz - 0 (47d)

This justifies the assumption made that Bz2 = Br2 = 0.

We now seek to find the polarization distances Pr2 and Pz2

Expanding Equations (22a) amd (22b), we find

dP OPr, dPrI BP dP
Vr d -- O- "-T -'T- 71 -z d

dPz BPz, dPr, aP 1  dPElV Z Zd- +  +-T i + Z1

Combining these with Equations (47a and b), we have:

M2Pe RZ 1 + r 2 1

- -____ 12R 1  (R - os)Pz2 = 4 2R 2  + -4R co2/q

I- CosPz] [(I(R) - I2(R) sin 241 (47e)

I - 4R1 Z 10 1
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and

M2 Re2 1+
___1 1R + co-P

r2 -4 -?_ + R 1)q7

2 2 2

-----z-Coso P I - cos 2+i2I (R) (R) - I

(47f)

We note that the equilibrium radius of the beam is shifted after the ex-

citation occurs, since P 2 contains a part which does not vary with time.

Figure 5 shows the effect of a disturbance on the outer radius of a beam.

-. 6

RADIUS OF EDGE BEFORE PERTURBATION

RADIUS OF EDGE AFTER PERTURBIATIONR

-. 4

.3 M . "I
Bo An~.O
A81.0

T30 60 110 110I~ 21O 0 210
I rI

18 0 -/3z

Figure 5. Distortion of "D-C" Edge of Beam by R-F Disturbance.
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This fact will make it difficult to develop a method of calculating the surface

charge density as was used in the first-order solution. However, if we

assume that Ez 2 must be continuous at r = b, we may find Er 2 and EZ2

outside the beam. Then ps2/o will be equal to the difference between

the values of ErZ inside and outside the beam at r = B. Following this,

we find

os~ z 2 -4R"
p3 2 : CB2 [I + C - ccosR-4R1  i4 cSp q 4a

where

Po M 2 PR 2 12(B) - I2(B) I?-(B)
Po 1 0e1R1

Cs2 4 Ko(ZA) Io(ZB) - Ko(ZB) Io(ZA) B

(48b)

Only the a-c fields are used in computing the surface charge, since the

d-c parts merely distort the steady-state solution and do not produce a-c

fields in the region outside the beam. This completes the second-order

solution. We now consider the third-order case.

The third-order solution may be obtained in much the same way

as the second-order solution. We may write

d (Vr3 + Qr3) = ,(E 3 - B) , (49a)
WE r r3r3 -vzo03

d (v + ) = nE (49b)

where

dQr3  eVr 2  Vrt eVr82 8Vrl
= Vr = + Vr2 + + v z = + vz2 =x (49c)
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dQz3  8Vz + 8v ziv 5  + v 1  (49d)

vrl -T- + "TF + VzT i +  z2 =Z

If we apply the same approximations as made in the second-order

solution and combine Equations (49) with Equations (8c), (9a and c) we

find
( a+d 2Ez3 +2E3

This is the wave equation for the third-order solution.. The terms in-

volving P 2 arise from the current density in the Maxwellian equation,

t8E

The solution of Equation (50) is not as straightforward as was the

solution of Equation (44) in the second-order case. The Qr3 and Qz3

have the property that

a dQ r3 a dQ z3

[±~~r- - t- =~r F Vi)]

but this is not the case for the terms involving T2m

To deal with the part of the drive terms involving 2 we must

make some approximation. An exact solution may be found for part of

these drive terms. For the remaining part we may approximate the drive

terms by the value they assume at R = 0. Figure 6 shows the basis for

this method.
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CENTER OF A IMATING
BEAM FUNCTION
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R

Figure 6. Method of Approximation Used in Calculating
Part of Third-Order Solution.

If B < I the error should be reasonably small. Thus this

approximation method assumes a relatively thin beam. The method used

has the additional merit that the mathematical expressions used as drive

terms in the solution of Equation (50) are more likely to be accurate at

the center of the beam than at the outside, which is in the boundary layer

region. For the case taken to compute the values of beam parameters

shown in Figures 7-1i, it was found that the error at R = B, as shown

in Figure 6, was less than 10 per cent for all the drive terms used.

After calculating the drive terms dQr 3/dt and dQZ3 /dt and

using Equations (49) and (50), we find:

v3w e q 1 [31 3(R) - 31 2(R) I (R) + (R)] o 3 pq z+C COOP z
"-3 =

+C 3 cos(p p- Pq) z+C 4 cos(Pp+Pq)z+[l0(R) -j]-C 5 coo3P qz

+ C6 cosP qz + C7 cos(ip - Pq) z + C8 cos(P p + Pq) Z:1 coo 3 0  (Sla)

The values of the constants are listed in Appendix E.
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3:2 (r[3
M 3 P 3 3I(

vz3 e q I3(R) - 3] (R) Io(R) + -C cos3 z+ Coq-
z3 8 1 0 R) 1 R) 0  R Iq + 2 os q

+ 3 C5os(Pp-q) Z+ C 4 cos(Pp+pq)Z + [I3(R)] E 5 cos3p z

+ C6 cosgqPZ + C7 cos (P- P q)z + o8 ((P+Sq) ZiJ coo (1b)

The I j in the second term of Equation (5ia) is the result of the approx-

imate solution. By similar methods, we find

M 3P2W 1 21 3(R) 31 z(R)I(R
3 w e q 31 2(R) I (R) - 313(R) + 1 0 - "R
r3 8 4R R

[C Cos 3 pqZ + C2 CosPqZ + C3 Cos (Pp pq) + C4 co. (Pp+Pq)7]

+ [Io(R) 11 (R) C] [Ccos 3 pqZ + C cos PzZ

+ C7 cos(Pp Pq) z + C8 Cos(Pp+pq) z sin 3c (SIc)

and

= M3w +3- 151o(R) 12(R)

r8 R

1ZI(R) ir
+ R2Jc1 cos 3p qz +C 2 cos Pqz +C 3 coo (p-q z

+ C 4 cos(p+P q)Z] + [312(R) II(R) [Ccoo 3 pqZ + C6 coS~qZ

+0 7 cos(P _pq)Z + C8 cos(Pp+ q) z sin (51d)
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The charge density is given by

M 3 3 3 211 R) I-(R) 11 (R)
P 3w eo 1 6 IJR) 1 R ; - 6I3 R) + 12 6 0

,= 8 , (R,,o1(RI[
3 C 8 1

- 48 R-- + 42 R)--- 0 (R sin3P z + C sinpqz + C sin(p z

+ C012 sinl(Pq + P p '' + [21 0 (R) I,(R) -2IO(R) + C 013 sin 3 Pq z

+ C1 4 sin PqZ + C5 --n P p.Pq )Z + C16 sin(Pq +Pp )z sin3 ,

(5e)

and
1 3 2 (r + (R) ICR) I(R) 1 2 (R) Ii (R)

(R) Y 0P R 66- +-30
p 3  p0  8 2 R

+ 24 - 413I R- 41:R) IR] i 3 PqZ + 00 sinpqz

+ C1 1 sin (P - q' Pz C,2(Pq+PpIZ] + [2Io3(R) - 21o(R) I(R n3 sn 3 PqZ

+ C14 sinfPq z + C15 sin(pp- q)z + C16 sin (Pp+ Pq) sin

(5 if)

We may compute the zur.ace. charge in the same manner as in the second-
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order solution and find:

= 8 Cs31 sin3 z + C sinpqz + C sin(p - p )z
P938 31 9 q 10 q t p q

+C 2 sin(p+P) pz +C3 [3  sin3pz+C z12 pqs3Z 13 sn3qZ +14 snqZ

+ C15 sin(p p- pq)z + C16 sin(p+pq) z sin 341 (51g)

m3 p 2 R 2
s3 R8 Cs3l [9 sin 3p + C0 sinpqz + C sin(p -p )z

+ C1 sin(Pp+pq)z + cs" Z [013 sin 3p qz + Cj4 sin qz

+ C 1 5 sin(p p- pq )z + C sin( p+pq) z sin, (5th)

where

1213(B) 31 (B) Io(B)
0831 3 312(B) II(B) - 313(B) + I B

()312 ( (B +it(B)\ 1 0 (3A) Ij(3B) + I0 43A) K1 (3B)

- 39(B) - 31 1 (B) olB) + Ko(3A) lo(3B) - Io(3A) Ko(3B)

1 2 (B1 1 _3 1] K0 (3A) 11 (3B) + I ° (3A) K I (3B)
Cs32 I0  (B) " -"6 Ko(3A I(3B) - 10 (3A)Ko(3B)

-45-



W 3 2 31(B) _ 2 3
C = Io(B) - 311 (B) 10 (B) + -- g- 31 0 (B) II(B) + 31 1(B)

151o(B) 1 2(B) 12I0(B) Ko(A) 1 (B) + Io(A) KI(B)

B + Ko(A)I(B) - I Ko(B)

2 K (A) Ij(B) + Io(A) KI(B)
0s32 031o I(B ) 10(B) Ko(A) I(B) - I(A) Ko(B

The next step is to determine the polarization distances. From Equation

(22) we have

dr P dP dPz r r2 r, dPz2
V 3 = "3 + 9TP . + -d- + "P dP + -P dP

+ dPr + Fr Z + dPr (Pr 2 dP21 
0 Prt 0 Pr+ dP+l +zi r2r+

PO z, &POz8 Oz+ rl ZI +T ' " -  + rl rtII7 + TI zi "-r-

and

dPz3  OPz dP 2  OPz1 dP 2  OP2 dP 1  OP dPVz3 + Pr 2 + " + z2 r + z2 z,

SP OP dP dP z 2  SP 9P dP dP OP OP
ZI rt ZI+ z + Ii zi zi r+ rt ri zi

With these equations and Equations (5la-d), we may compute the

third-order solutions for polarization distance. However, the expressions

for the third-order polarization distance are rather complicated, and

since they could not be correlated with experimental results, they are of

little interest and will not be given. Graphic results for a typical case

are presented in Figure 7.



As before, we find that thA TE quantities are so small that they

may be taken to be zero. Each cf the third-order quantities has two parts,

one with frequency . and one with frequency 3w. The terms with fre-

quency w add, of course, to the first-order solutions. We note that the

results obtained thus far, when added, are series of the form,

M I f ( r , z t ) + 2 n  fn ( r , z , t I

If we assume that the functions fn all have some upper bound, the con-

vergence of ths solutions depend on the convergence of the series,

n(Me
) n

This series converges for MP e < 2, and we may conclude the MPe must

be less than two for the results to be valid. However, the results should

be used with caution for MPe > I, since there is no certainty that the

series solution of the problem would have the form given above because the

general term is not known. But we can say that the series will certainly

be a power series of form,

fl(r,z,t) + 0Cn fn(r, z, t) (MPe)n

and should be uniformly convergent for MPe < 1.

One further quantity is of interest. This is the total current density

J. We have

J 2TfZ Pn-k dl F + Inb (52)

k=0
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where

srb ZPsk Ynk

We now consider the results of the analysis.
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CONCLUSIONS AND RECOMMENDATIONS

The results of the preceding sections are shown graphically in

Figures 7 through 11 The beam geometry was assumed to be such that

B/A = .5 and B = .5, and MP e was taken to be equal to one. This is a

reasonable value of beam geometry, and MPe was chosen to be large

encugh to show the nonlinear effects well.

Figure 7 showg the longitudinal polarization distances. It may

be observed that the .hird-crder polarization distance is quite large.

The amp!itude of the fundamental polarization distance is strongly in-

fluenced by the correction term obtained from the third-order solutions.

An interesting detail may be observed about the second-order polarization

distance. The amplitude of this quantity never changes sign, so the

polarization distance i atwayp in the same direction. This effect may

also be noted in Figure 5, where the edge radius of the beam is always

decrea ed by the R-F disturbance. This effect is strongly related to the

choice of modulation conditions made here and might not be observed if

different modulation ccnditions were used

Figures 8 and 9 ,how the velocity modulation effect. The longitudinal

velosity is almost p1oriodic in appearance and the fundamental component

is not toe strongly influenced by the higher-order solutions. The velocity

is ehown for the case of Aectronr at the center of the beam. For relatively

thin beams there will not be much variation in the relative amplitude of

the components as one moves from center to edge. The radial velocity

at the edge of the b-eam i completely aperiodic and shows extreme

fluctuations.
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Figure 12. Amplitude of Axial RF Currents at Reduced Plasma

Wavelength from Input (as a function of modulation
parameter M, showing current saturation).
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Of most interest is the current density, as this is strongly related

to the output voltage to be expected if an output gap is placed at some point

following the input gap. If we imagine that an electron moves through a

gap in a drift tunnel, we see at once that it will induce a charge on the edges

of the gap and therefore produce an electric field across the gap. Naturally,

the strength of such a field would be proportional to the number of electrons

producing the induced charge. This rough example gives an idea of the

relation between the induced electric field and the current density in the

gap. If mathematical expression of the relation is desired, it may be

deduced from the fact that

&E

where JT is the total current and J the conduction current.

Figures 10 and It show the amplitude of the components of current

density at various distances from the input gap. It is found that the radial

current density is of the order Pq/Pe less than the axial current density

and hence constitutes a very small portion of the total current.

Most of the fundamental current density is produced by the surface

current. In the higher-order solutions, the current is produced by both

conduction and surface effects. The higher-order conduction currents

arise from the density modulation of the beam rather than from the velocity

modulation.

The contribution of the third-order correction term to the fundamental

is most significant. It is found that the voltage across a hypothetical

output gap placed one-quarter-plasma wavelength from the input will
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increase with increasing input voltage, but if the input voltage is made

large enough no further increase will be obtained. This effect is shown

by Figure 12 and indicates a method of applying the results to the problem

of current saturation in klystrons. The amplitudes of the second and third

harmonics are shown for comparison.

It will be noted that the higher-order solutions apparently tend to

become infinite if p = 2 q or p = 3 q. Actually this is not the case.

If one of the these conditions is true, a driving frequency will be equal to

a natural resonance of the system and growth of the waves result. This

is a sort of parametric amplification and has been observed in actual

beams by Mihran.2 4 For the case Pp = 2q we would have, for example,

E 2 = (R) - I(R) 1 z sinPz - cos pz sinZ2}

A plot of the axial current density is given for a case in which P p = 2p q

in Figure 13.

This effect of harmonic current growth under appropriate conditions

obviously would have important implications for the design of frequency

multiplier klystrons. The theory of the confined beam developed by

Paschke 4,15,16 predicts such behavior only for very thin beams, but

since the Brillouin beam has a property of possessing a natural resonance

at the plasma frequency, it should be possible to obtain growth in the

amplitude of the harmonic with any beam geometry.

The present work also can be applied to the suppression of outputs

of unwanted higher harmonics in klystrons. It will be noted from Figure 10

that both second- and third-harmonic current amplitudes are small at
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i80/r Aqz = 700, while the fundamental component is quite large. This

would be an ideal place to put an output gap, if it were important to suppress

the output of second and third harmonics.

This analysis leaves several problems unsolved. The most

important is the problem of satisfying the boundary conditions at the edge

of the beam. The method employed here forces the solutions to satisfy

the boundary conditions by making an appropriate choice for the surface

charge density. However, there is some doubt as to the validity of this

step. Perhaps further research will shed some light on the solution of

this problem.

A nonlinear analysis based on the small-signal analysis of Paschke1 3

failed to give a convergent series of functions as a solution. The basic

equations used in this analysis are believed to be correct therefore, and

the approach used here should be a good method for further work since it

is relatively straightforward. The problem of the extension of this analysis

to a beam with more general focusing system, however, would be a most

difficult one. Studies of electron motion in gaps will also be useful to

give a better description of the initial conditions.

This study is believed to be the closest approach yet made to the

description of the behavior of an actual device, since the effects of a

finite magnetic focusing field are taken into account, and it is hoped that

the results of this study will be useful in predicting the behavior of actual

devices. There is still much work to be done, however, before we can

obtain an accurate picture of the large-signal behavior of real devices.
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APPENDIX A: GLOSSARY OF SYMBOLS

Roman Letter Symbols

a = radius of drift tunnel
A = e a

Al, A2 = constants

b = radius of unperturbed beam

B = eb

B r  = radial magnetic-field strength

B z  longitudinal magnetic-field strength

B0  = azimuthal magnetic-field strength

B = focusing magnetic-field strength

c = velocity of light

C = constant

d = width of modulating gap

D = e D

e = electronic charge

E = electric field

F, f = notation for functions

G, f = notation for functions
4wA)

H = normalized magnetic-field strength, L

Io I = modified Bessel function of first kind

J = current density

K K = modified Bessel function of second kind

km magnetic constant

M = gap-coupling coefficient
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m = electron mass

P = polarization distances

Q = drive terms

r radial co-ordinate

R P er

t time

T w t

v = velocity

z = longitudinal co-ordinate

Z = ez

Greek Letter Symbols

a = modulation coefficient

P= phase constant
Pe = w/v

e zo

P pw /v o

Pq q/vzo

y, r = radial propagation constants

CO  = permittivity of free space

7= e/m

e = azimuthal co-ordinate

o = permeability of free space

= normalized velocity

P = charge density

Ps = surface charge density
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*= T-Z

- fundamental frequency

L  Larmor frequency,

wp plasma frequency

q reduced plasma frequency

q
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APPENDIX B: THEORY OF THE RELATIVISTIC BRILLOUIN BEAM

We now seek to extend our analysis to include beams in which the

d-c velocity v does not satisfy the condition v 0 << c.

To facilitate the analysis we choose a co-ordinate system moving

with respect to the structures surrounding the beam with the velocity v 0

and in the same direction as the electron stream. As before we refer to

the co-ordinates described by Figure 3 of the text as r, 0, z, t, the rest

system,and denote the co-ordinates of this system as r', 0', z', t', the

beam system. We restrict our attention to the Brillouin beam.

The equations of motion for small-signal solution in the beam

system may be written as

82 Pr,

at = Er -= rnLB

82 P,1
= nE' + r LBI

We proceed to derive a wave equation exactly as in the first-order

solution in Chapter II. We neglect TE quantities, combine with the Maxwell

equations, and arrive at the following result:

2 r59 -
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It will be noted that these equations are the same as those of the

main text except for the replacement of the d/dt of the text by 8/at' .

The reason for this is, of course, that 8/st + vZo 8/8z = d/dt, and vZo

appears to be zero in the moving co-ordinate system.

The boundary conditions are matched in the same manner as in the

main text and we find two possible sets of solutions to Equation (B. 1) for

space-charge waves after conditions for propagation are considered:

-= Io(y' r') exp -j(cpt' - P,(") z')] (B. a)

and

P 2)= exp -j( pt, - , (Z) z')] , (B. 3)

where

(i I 1  
K °(r 'a') Il(r'b') + I (r'a') K,(r'b')

Y! bo1 0 y' b,) - W Kr' a') 1 r'b') - Io(r'a') K0r b)

(B.4)

and

r 2 = , (1)] 2  - W 2

c

2
=12 2 i=r, +

c

The values of P' (1) and w' are fixed by Equation (B.4); P, (2) may

assume any value. Figure 14 shows the appearance of a typical set of

solutions for w, and P'.

The next step is to transform the solutions (B. 2) and (B. 3) into

-60 -



solutions useful in the rest system. The equations of transformation are:

S(z' - vzo t') (B. 5a)
2v
zo

C

r = r' (B. 5b)

0 = (' (B. 5c)

= t- z' (B. 5d)

Further, if we have a wave described by

j(Aw' t' - PIZ.)
e

in the beam system, we find that the same wave is described by

v WO
zo

z It + c 2 Ce '+v 't +

ZO:

C C

in the rest system, by straightforward application of Equations (B. 5).

Thus, we conclude:

V W'
!

vv

o
I + -'z--

C

IP 6 (B. 6a)
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=o (B. 6b)

The equations of transformation for the electromagnetic fields are

E=E (B. 7a)

EI (E + v B) ,(B. 7b)

z z

B r -(' - B , (B. 7)

20

Br (B + -A E) (B. 7f)/v2 z

-0

V zoz) B~g
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The velocities transform as follows:

= z(., . ) (B.8a)
z zo

rr, -re 0 (B. 8b)
v Vc Cz zo

C

With the equations of transformation (B. 5), (B. 6), (B. 7), and (B. 8), we

find the following solutions valid in the rest system:

= Io(yr) e wt-z) (B. 9a)

pr = - C Wr) e (B. 10a)

j(t - z)

v = (P ) l(yr) e (B. 9c)

-
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jv 2 v_j zo p 2 W -P Vz w - z)
lo ZO 0 (yr) ej(wt (B. 9e)

P V v0 = B - E = 0 (B. 9f)

In Equations (B. 9)

2 2

Y P
2 + 

( .0

v

zo (B. 1Ob)

I zo

P c . (B. tOc)

Equations (B. 9) give the solutions in the rest system corresponding

to Equation (B. 2). Waves in the rest system corresponding to Equation (B. 3)

have the form ej { t-"z) where

- vw
P1

P c (B. Ila)

2

CT
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and

W p *o 
(B. Ilb)

47

It should be noted that w is the same in both co-ordinate systems.

To determine the phase constants for the waves, we use the

following procedure: A curve of w' - P' similar to Figure i4 is calculated,

and the value of w in the rest system is specified. Then the values of

W1 and P1 are determined from the diagram so that Equations (B. 10b)

and (B. ilb) give the correct value of w in the rest system. The values

of P in the rest system may then be found from Equations (B. 10c) and

(B. Ila). There will be two waves of each type for which propagation is

possible.

In general, each of the two waves in the beam system corresponding

to Equation (B. 2) will have different frequencies as well as different phase

constants. This fact would make it very difficult to apply the method

described in Chapter IV to get a large-signal solution. Probably the best

method of approach to the problems of large-signal solution and initial

conditions would be through use of a computer.
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APPENDIX C: NONLINEAR EQUATIONS OF MOTION
IN TERMS OF THE POLARIZATION DISTANCES

It may be useful for some purposes to have the nonlinear equations

of motion stated in terms of the polarization distances rather than the

velocities. These are given as follows:

First-Order Equation :

2 dPei
d r + 2kraL = Eri + lrwoBzl " ivzoB 0 1  (C.1)

and

dZ dPr

P0 1 - Zkm L F = 1 Eo1 + ~Vzo Br1  (C.2)

and
d 2 P

d2 P 'nE , - qrw o Br (C. 3)

Second-Order Equations:

rz 2k dP0 2  21 ri d2 Pri dPrt dPrI
+7 m L t+ z Z -'Tr- 2 t F =t

dt dt dt

dP 2  *~l dP. f dP | ~o
P P OPPdet &t dP I ~ 2 ,rw 2 t dP__
=tr 6zF dt sit) m z a

+ Zk'L -T - " r = qE r2 + rwoBz2 * 1 T  Bs

dP -
" - f Be " V Be 2  (C.4)

-66-



and

d 2P dP 2  dPzi 8 dPo, dPr, dPoi 8P01 d P
02 - 2k w + 2 + 28

+ L +/ r -a km L -at -kmtL + idt d=dt

C)~- Um wLF -rz mL1 k ( 8 19 1r -

+ dtr

= nE 02 + d B rt- B +  Br (C.5)

and

d 8P2 dOPrt dP dPr dP

dP2  aZ1i Z,+8Z1dP + 2 z, a lj dP5  ri 8 I

dtT 3 dtT F dtT_ ct t d F d

dP dPO
= nEZ - i1rwo Br 2 + riB I Br (C.6)

r2 + 1 =t rl

The third-order equations are very involved, and probably too

difficult tc use in practical calculations, so we do not include them. It

may be seen that application of Equations (C. 4), (C. 5) and (C. 6) to the

prcblem of finding a second-order solution would be more difficult than

the method of Chapter IV.
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APPENDIX D: SMALL SIGNAL SOLUTIONS FOR ARBITRARY VALUES
OF MAGNETIC FOCUSING FIELD

If we assume that magnetic forces on the electrons are small

compared to the electric forces (and this will be the case for nonrelativistic

beams), we may write the equations of motion as follows:

dvr I '
+ 2kmLe - Er , (D.i)

dvodt 2k wLV , (D. Z)
dt mL l 0

dv z ITE (D. 3)

We now combine Equations (D. 1), (D. 2) and (D. 3) with the Maxwell

equations, assuming that beam scalloping is small so that Vro = 0. The

assumption is made that E0( is small so that Equations (D. 1) and (D. 2)

may be combined in the form,

2 dEr
2 + 4k 2 2(D. 

4)
dt mLrI =

Then Equations (D. 3) and (D. 4) are combined with Equations (8c), (9a),

and (9b) to give the following results:

v = io(Ybr) *j(wt-z) (D. 5)
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=j'b I . /eJ( °t-Pz) ( .6
VrI r 4k Z 2 I(Ybr) t (D. 6)

Wq

where

Oe m L q
2 q-

Vb[4k2 2 + W2  W 2l(.7

m L p" qj

and = 3e 1 Pq as before. For purposes of matching at the beam

boundary we have

2 2 I N( b ) I [K 0 (ra) lIy b) + l(ra) KI(rb)1
-" 2 q 4 kmL =- Ko(ra) o(rb) - I(ra) K (rb) j

q mL

(D.8)
. 2

where r Pe

So far the solution is comparatively uncomplicated. Howe-er, we

also have'

V 2k mwy I ) j(Wt - z) (.9= 4k W L

It is the presence of the velocity in the e-direction which makes the

solution difficult. As may be seen from Equations (D. 7) and (D. 9), if

2kmwL A Wq, our results for the Brillouin beam are still very good

approximations. However, if this is not the case, then the existence of
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a velocity in the 0 direction makes a nonlinear solution much more

difficult to obtain.

The quantity E(i is also of interest in this analysis. We apply

the previous results and Equation (9b) to find:

jW v0  2k w 2IE01 : b " W oYb r lo(Yb r ) +2mL

= -- 2 -Z 1~~)+ (4k~ Wt - Z)
Yb/

I INr) e (D. 10)

Because of the factor i/c 2 in the first coefficent, the value of Equation

(D. 10) will always be small, as assumed above.

To sum up, we see that the analysis of this section shows that

the analysis of the Brillouin beam may be applied when km is small.

If km is not small a nonlinear solution will be most difficult to obtain,

and the analyses made of the confined beam may be of considerable use.
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APPENDIX E: VALUES OF CONSTANTS USED
IN THE THIRD-ORDER SOLUTION

3R 4  
R4

11 4 _7(1-4R) (1-9R) 02(1-4Rj) (1-R )

2 C41-2R1 2 IZR +R 2  1-ZR 2 1 -ZRC I I C 13 z - f.I

2

1i - (-4R ( - R ) i 1(-4R I)(2+Rl) 1

= 3R 2-8R 4 0R2

C ( I- ) ( I- C .4

( -RI)(1-4R I (1-4RP)(i-9R)

2 
2

iR)-ZRi Z  
(-(i-ZRt

10-=2 1 
1-R=

(I-4RZ) (Z-Ri) I i-4R,) (Z+RI)

C I - 1

C 1 - zR 0 12 4 i

3R 2 -8R 4  
3R 2

C I I C 1

(I-R,) 1-4 I(I - R ) (I-2 j

05 =-(I +R ) (1-2R 2) - R )(I -2R )
(I -4R1 ) (2 -R) (6 - i4R,) (Z +RI)
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ABSTRACT

This note discusses kinetic power flow and kinetic energy in

relativistic space-charge-wave devices. The electrons are constrained

to move in the z-direction only. The average electron velocity is

assumed to be an arbitrary function of z and the transverse co-ordinates.

iv



I. INTRODUCTION

Practically all low-level longitudinal -oscillation electron-beam

devices, such as h-f diodes, klystrons, traveling-wave tubes, etc., are
I

best described and understood in terms of linearized space-charge waves.

In addition to the electromagnetic power flow, given by Poynting's vector,

these waves are associated with a kinetic power flow. To take advantage

of the power -conservation principle, one has to take the kinetic power flow

into account. In doing so, however, one finds that cross products between

the wave quantities have to be included in order to get a finite time-average

a-c power flow. Such cross products are ignored in the linearized space-

charge-wave theory, and one is therefore inclined to believe that a first-

order nonlinear space-charge-wave theory is necessary in order to formu-

late expressions for the kinetic power flow and the kinetic energy.

It was first realized by Chu 2 that the kinetic space-charge-wave

power flow, can, in fact, be expressed in terms of the linearized space-

charge-wave quantities in spite of the fact that the expression will contain

cross products that are of the same order as the first-order nonlinear

quantities that are ignored. The expressions and concepts developed by

Chu have led to many important discoveries concerning the flow of signals

and noise in electron beams.

An elegant treatment of the kinetic power flow has been given by

LouiseU and Pierce. 3 These authors deal with the case of a !ourelativistir,

electron beam with constant average drift velocity. The purpose of the

present note is to construct expressions for the kinetic power flow and the

kinetic energy in a relativistic beam with arbitrarily varying drift velocity.

1



II. BASIC RELATIONS

To begin with let us deduce a general relation which can be obtained

from Maxwell's equations:

curl R - T+a a-

curl 1m= - (2)

If one multiplies Equation (1) by E, Equation (2) by R, and subtracts the

two equations,one obtains

div e F W e+ T = 0. (3)

where E xzu is the poynting vector while W + E 2 4,

em sin

is the electromagnetic energy density. It should be pointed out that we have

made use of the vector formula,

I • curlI -S. curl + div (&' )O 0

in deducing Equation (3).

In addition to the electromagnetic energy and power, we have a

kinetic energy density Wk and a kinetic power-flow density Pk associated

with the electron beam. Since the total energy is conservative, we have

the continuity equation,

div(P +Pk)+ i (We + Wk) - 0 (4)

2



From Equations (3) and (4), one expresses

T. div Wk + . (5)

We are assuming that the electron motion is constrained to the

s-direction only. Thus i and Pk have no components in the transverse

direction and Equation (5), which like relation (4) describes energy con-

servation, can be written in the form,

i Es = + S- (6)

where i is the total (dc + ac) electron current density of the beam.

If the total kinetic energy of the electron is w, one has

dw= o eEeds or = - eE (7)

Furthermore, one has the relations (p = electronic charge density),

Wk L w (8)

and
is

Pkz = -7 w .(9)

By the use of Equations (7), (8), and (9), the continuity equation

(Sila/) + (Op/t) . 0 and the relation i s = vxp, one obtains

3



ksW4 k wi +~ OW+ w OW]
at as a at at

which P"Vos Equation (6).
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I. KINETIC POWER AND ENERGY ASSOCIATED
WITH THE LINEAR SPACE-CHARGE WAVES

We now write

iz 1 is + il I i2 P = Po + P, + P2

v z -- v o +v I +v 2  E z - =E 0 +E 1 1E 2

where the subscripts o, 1, 2 denote terms of the zeroth (i. e., undisturbed

d-c terms), first (. e., linear perturbation terms) and second (i. a., lowest

order nonlinear perturbation) order, respectively.

If one expands Equation (8) to the second order the result can be

written in the form,

Wk = Wkl + WkZ (11)

w kl. [P w+ (vo oVlz "v2  11 l [ o+2V ] (

and

= W v , 2 o}2 o (13)"Z 0 P0, o o-, V I,-I .+,ZWo ,

where wo . w(vo), wo' = dwo/dCv2o and 22 d o/div2 2

an 0~, do/~ ) *The reason

for choosing Wkl and WkZ in this particular manner is discussed later.

Similarly one can expand Equation (9) to the second order and write

the result in the form,

Pks ,*- Pk + PkZ (14)

5



where %

Pl = i )(W+ZvoVlWo) (15)

and

i i(v w, 2v vw+ 2v 2 21)iw(6

The second-order expansion of the product is E z can be written

in the form,
ii dw (17)im~ = . - - (i E )l + (izEz)2  (7

where

(isEz)l - ( [ + 11) Dz(wo +2vov1w o  (18)

and '

D13) (v ji [i~~wE +2v v w,~ + 2v 2v 2 W1)

0o I z I o 0

-7 0 - 1 + iZzo(19)

Here D. denotes the linearised operator d/dz, i. e.,

S 158

Now, from the linearized space-charge-wave theory one can in

principle calculate E0 +EI iol , v 0 +vl, and p0 +PI for any given

space-charge-wave device. We observe that Equation (18) is the product

(io + il)(ZoE 1). Furthermore, one easily shows by the use of Equations

(12), (15), (18), and Oil/8S m - Sp 1 /St that the energy conservation

relation,



(i P kl + OW kl (20)
z 0t '

is fulfilled for our choice of Pkl and Wkl . It is clear from Equations

(12) and (15) that we do not need to go beyond the linearized space-charge-

wave theory in order to express Pkl and Wkl . Nevertheless, since the

energy conservation relation is satisfied, we can define Pkl as the kinetic

power flow and Wkl as the kinetic energy density associated with the

linearized space-charge waves.

By the use of Equations (13), (16), (19),and 8i/85 = OpZ/et, one

can easily show that the energy conservation relation,

0 PkZ + Wk2 (21)
(izE ) = z2+ - ( )

holds for Pk2 and Wk " . These quantities, which are of the second order,

cannot be calculated without knowing the lowest-order nonlinear space-

charge-wave terms i2 , v 2 and p2. Thus we define Pk2 and Wk2 as the

second-order power flow and energy density respectively associated with

the lowest-order nonlinear space-charge waves.

It should be pointed out that Pkl and Wkl contain terms of the

zeroth, first, and second order, whereas Pk2 and Wk? contain terms of

the second order only. It follows that Pkl and Wk2 include all power-

flow and energy-density terms respectively of the zeroth and first order,

whereas they only account for that part of the second-order terms which

is to be associated with the linearized space-charge waves. The remain-

ing second-order terms are described by Pk2 and WkZ , respectively.

7



Thus Equations (13) and (15) do not enable one to deal with energy and

power to the full second-order accuracy unless PkZ = 0 = Wk2, which is

usually not the case. This circumstance, however, is of minor impor-

tance,,since one is seldom interested in accurate power-flow calculations,

whereas the energy conservation principle that applies to Wkl and Pkl

is an extremely useful tool in many basic investigations.

8



IV. THE RELATIVISTIC EXPRESSIONS FOR Pk1 AND Wkl
IN NONHOMOGENEOUS BEAMS

In the relativistic case the energy of the electron is expressed by

the well-known relation

2

w(ve) Cm c1 [( ) - (22)

where m ° is the mass of the electron at rest and c is, the velocity of

light in a vacuum.

By using Equation, (22) one obtains from Equation (13),

1

2 0o 2)- o_
Wit L c I° c+ v

+ I - c2 -1 -c o  +i (23)

and from Equation (15),I i c CT! 1
In expressions (23) and (24), v0 is an arbitrary function of z

while p0 (•) is fixed by the relation v0 (a) p0 (s) = io = constant. The wave



quantities i 1, pl, and v, are functions of z and t to be determined from
2 2,oefnsta

the linearised space-charge-wave theory. If vo c, one fn t

Equations (23) and (24) reduce to Equations (14 and (13). respectively of
3

Louisell and Pierce, 3which shows that these authors' expressions are

perfectly valid for the nonhomogeneous (vo0 constant) case.

Finally, we express the time-average kinetic a-c power flow from

Equation (24),

K k > ac e7 v Re(i~v,*) (25)

It should be pointed out that the important Equations (23), (24), and

(25) are valid regardless of how v0 , 0 o, and i s( = pov 0 ) vary with the

transverse co-ordinates.

10
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ABSTRACT

The relativistic linearized electronic "telegrapher's equation" of

the Llewellyn parallel-plane gap is deduced. General expressipns for the

a-c quantities, such as the electric field, the electron velocity, the con-

vection current density, and the gap impedance are worked out.

-iv-



I. INTRODUCTION

Suppose we have two parallel-plane electrodes (two grids, or a

cathode and an anode) between which a single-velocity electron beam

propagates perpendicularly to the electrodes (the positive z-direction,

Figure 1). The beam and the electrodes are assumed to be sufficiently

extended in the transverse direction so that fringe effects can be ignored.

The d-c voltage between the electrodes is such that no electrons are re-

flected in the gap. There is an a-c voltage between the electrodes, and

the gap is loaded by an external a-c circuit connected across the gap.

The a-c behavior of such a system was studied in detail by

Llewellyn i , 2 more than twenty years ago. Llewellyn's theoretical work

has been of enormous importance in connection with the understanding of

high-frequency phenomena in various electron devices, such as diodes

and multigrid electron tubes, klystron gaps, etc. Llewellyn's classical

analysis was based on the so-called ballistic approach and involved a

tedious integration procedure. Recently Rydbeck 3 has published his early

(about 1953) "telegraph equation" studies of the axially inhomogeneous

ionized stream. In these studies Rydbeck deals incidentally with the

Llewellyn gap. His approach is based on the space-charge-wave concept,
4

first introduced by Hahn, and while his results are identical to those of

Llewellyn, his approach is considerably more efficient.

One of the dominant trends in modern microwave electronics is

the development of extremely high-power electron devices. Continuous-



wave klystrons for 1 -Mw, S-band power are now under development. Such

tubes utilize relativistic electron beams (up to 300 key). It is therefore de-

sirable to extend the parallel-plane gap analysis to the relativistic velocity

region. The purpose of this report is to present an introductory relativistic

linearized gap study based on the space-charge wave approach. Explicit

relativistic expressions of general nature for the various a-c quantities

have been worked out. The studies will continue in an attempt to apply the

general results on specific technical problems such as the space-charge-

limited high-frequency diode with a relativistic anode voltage, the relativis-

tic klystron gap, etc.

V*ejwlt

W - IciE

- _1P _

I-|

Electrode a ElectrodeI
Cethode Va d Vb

Figure 1. Llewellyn Electronic Gap.
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II. THE LINEARIZED RELATIVISTIC WAVE EQUATION

To begin with, let us introduce the following fundamental notations:

W = angular signal frequency

t = time

z = axial co-ordinate, position of the electron

-e/m °  = electronic charge-to-mass ratio (at rest)

eCO = permeability of vacuum

c = velocity of light in vacuum

v(z, t) = v0 (z) + vj(z) I = total electron velocity

v (z) = d-c velocity

vt(z) = amplitude of a-c velocity

p(z, t) = po(z) + p1 (z) e j ° t = electronic charge density

p0 (z) = d-c charge density

PI(z) = amplitude of a-c charge density

i(z, t) = i0 + i I(z) • j Wt = electronic current density

i = Pov 0 = d-c current density (constant) in the positive 5-direction

iI(z) = v0 pt + vrp0 = amplitude of a-c current density

E(z, t) = E0 (z) + EI(z) e j t = total axial electric field in the positive

z-direction

Eo(z) = d-c field

EI(z) = amplitude of a-c field

3



A. The Relativistic Equation of Motion

d v-

( 2 )1/2 0o

Remembering that dz/dt = v, we can write

d 2
z} 2 /2- "(2)

Now, if Iv 1 < < c , thenc, 2 , 2. jw
2€2Vo e t

2 1/2 2c, °2 1/ 2  v 21-)-1/23 2 ' 3

XC YA ve4~
(2) (i. vZ2 I co[

2 v vIy~

~TT2 (V v2)3/2

By the use of Equation (3) we can separate Equation (2) into its d-c and

a-c parts:

dc2E ,(4)
v1 - / 0 o z  '

CT o

d v 1 0* 1  EdJwt (5)
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A. The Relativistic Equation of Motion

d v e

= --- S (1)
(v21/2o

Remembering that ds/dt - v, we can write

d [--il] -iffE . (2)

Now, if Iv I<< c, then

c2c2 + v{3)ut d

By the use of Equation 3) we can separate Equation 2)1 into it. d-c and

a-c parts:

c' 2 i/ 0 v m°o

l/ v21/2l v 23/
11 c 2, (4)

! 
o

t J J

4



The a-c velocity can now be expressed from Equation (5):

( -
3/2

v e t  - E ejWt dz (6)

B. The Equation of Continuity

8i e e ~ t  ap e W't

= - a ei(7)

Since
d a dt 8 ,8 1 8
ds- =az dz -t -z To Fr

one can write

di I e j t  8, 1 e j t  ai I e jwt

dzz at(8

By the use of Equation (7) and the linearized relation i I Po~V + PV 0

we obtain from Equation (8)

dij t *O JWt

d1 vie (9)

Introducing the notations,

2 -op 0  -ei0
0O 2 3

0400 000ov

1 e M 4/v o , and k = w/c , one obtains by the use of Equations (6) and (9)

5



wher Fe f[Pe ( 2 f E l a d] dz , (10)

where use has been made of the fact that Po /p3 is independent of 

(and z).

Let us now define a wave potential 11(O) by the expression,

= 0~ p2. [f (' I) As2'ECi d9] dO (11)

where we have introduced the d-c drift angle 0 = fedz. Furthermore,

with dO= Pdz , one gets wt = fdt l 'o- dz = fP.dz = .

Z l can be expressed from Equation (11), viz.,

-I 1 eJ d Id_(Pe___)_1_1d(. 3- /Z

or in an alternative form,

-I e n n d 0=W 0- / - d 07 k /

/

(13)

Equations (6) and (11) yield

vII e 0 -JO I d

6



From Equations (10) an d (1 1), one obtains

2
PO e. je n (15)
2Pe

C. Gauss' Law for the Electric Field

E° = P (16)

as to

0l (17)

For the moment we are going to ignore Equation (16) since we want to keep

v a completely arbitrary function of z. However, Equations (7) and (17)

yield

8(i I ju 0 E 1 ) = 0 (18)

if we ignore the fringe fields. Upon integration of Equation (18),one obtains

11 +jWoEl = ic  (19)

where ic is a constant. The current I eJwt = Ai c ejhw t (where A is the

area of the beam cross section) is, of course, the a-c conduction current

in the external circuit between the electrodes. In dealing with pure space-

charge waves, one assumes that the gap is open. circuited, i. e., i€ = 0.

With respect to the nature of our problem, we have to consider the case

i 0.



From Equations (10) an d (11), one obtains

P2

i! =--- " n(15)

C. Gauss' Law for the Electric Field

E° = P (16)

- 1 =a (17)

For the moment we are going to ignore Equation (16) since we want to keep

v a completely arbitrary function of z. However, Equations (7) and (17)

yield

- - (i1 +Jwo 0 E) = 0 (18)

if we ignore the fringe fields. Upon integration of Equation (18),one obtains

i I +j oE 1 = ic  , (19)

where i is a constant. The current I e j t = Ai e jw t (where A is thec c c

area of the beam cross section) is, of course, the a-c conduction current

in the external circuit between the electrodes. In dealing with pure space-

charge waves, one assumes that the gap is open. circuited, i.e., ic = 0.

With respect to the nature of our problem, we have to consider the case

i c 0.
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Upon insertion of Equations (15) and (12) or (13) into Equation (19),

we obtain two alternative forms of the wave equation for r1, viz.,

,2

Pe dO k(1~32 V2J6Me)+ I= CJLIdP e(0
2 0

or

d 1 CUT + o p !'pI i e,,_

dF k2 3/2 r"i P 2e ed2 012 C

e) • JeL (21)
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M. SOLUTIONS TO THE WAVE EQUATION

The wave Equations (20) and (21) are valid for arbitrary v o( ),

For example, if v0 = constant (i. e., constant, Op. constant) and

if iu a 0. the solutions are

which is the usual slow and fast relativistic space-charge-wave pair in a

homogeneous electron stream.

However, if we do not assume the presence of positive ions, we can-

not choose va(a) arbitrarily since we have to satisfy Equation (16) which

can be written

dX e  i0
do0

Now Ujuation (4) can easily be written in he fo p,

Upon eliminatten of X betweea Mqcati pa (4) 4nd (43.). one abaes

9



which reduces the wave Equation (21) to the remarkably simple form

d I_______a___

kZc (25)

Observe that the characteristic space-charge-wave propagation

constant Apo no longer appears in the wave equation.

The general solution to Equation (25) is

Sf C-iiee) -0I d9 +C (26)

where the integration constants C1 and C. are to be determined from

the a-c boundary conditions.

We now colect our expressions for the various a-c quantities:

P o e e * (27)

_L_ je

E l = - (i € - i)=co - :) (28)

1i ee Cl.ice

it - - JW c P

10



__ ej  1 0 d C (29)

The a-c voltage amplitude across the gap becomes

d 00 0 209ozdOi El 1 del Po r P nd
__o e r

0 0 Pe0 P P 0

(30)

where d is the distance between the electrodes and 0 is the corresponding
d0

d-c transit angle r edz

The a-c gap impedance Zc finally is easily expressed from

V V
--C = -C (31)c I Ai
c c

Since f dO/P = d, one observes from Equations (30) and (31)

that the cold (Pp = 0) gap impedance Zc becomes as expected,

- .1 (32)

where Co = soA/d is the cold-gap capacitance.

With Equations (26) through (31), we have reached the principal

goal of the present introductory report. A continuation of the study is

under way with the aim of computing the complete set of Llewellyn co-

efficients with the relativistic corrections taken into account at least to

the first order.

11



It should be pointed out that for the convenience of the general

reader, the usefulness of Equations (26) to (31) is demonstrated in the

Appendix by applying these relations to the space -charge -limited high-

frequency nonrelativistic diode.

12



IV. THE BASIC D-C EQUATIONS FOR THE GAP

In order to evaluate the integrals appearing in the a-c Equations

(26) to (31), one has to express Pse(z) in terms of e(z). The purpose of

this section is to deduce the necessary d-c relations.

If V a and Vb are the d-c potentials of the two electrodes with

respect to the cathode, one gets from Equation (4) the energy relation,

c2 1 1 133)
k \l - m 0 a,b'

002

e a,

which can be written

-'-

P 2

I~a ea, b eV, b11141

ea,)

Relation (34) expresses the boundary conditions of Equation (24),

which can be integrated to obtain

Pb 1 P2bv 1/2
e 2 ~(6- )o+k I b +- -

k21/2 Ap3  o 0ian;c 2  Zi 2M2

e

13



r O a) Oi eYe a 1 / 2 a aO /m 2 mzc o  2mC 2  "

LL (3)

We denote the right-hand side of Equation (35) by s(0) and epress

I S 1(36)

( 2 )1/2

0/ (37)

0z (l. +k;os

Since S is a known function of 0 , it would now be possible to

eliminate P e from our a-c expressions by the use of the last two rela-

tions. The whole problem is thereby reduced to the evaluation of the

integrals involved and to the application of the a-c boundary conditions

with which we will not concern ourselves in the present report.

Finally we want to formulate an equation from which the d-c

transit angle o can be expressed in terms of io , Va , Vb , d, and w.

One has

00 0
d f do (38)f P e +k it; 5217

01k 5)

which is the desired equation.
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APPENDIX: THE NONBZ LATIVJSTIC SPACE -CHARGE -
LIMITED DIODE

In the case of the nonrelativistic space -charge -limited diode,

Equation (24) yields

1 dO
pp

0 0 A2
_7- - 2
p2 2,

pe

By the use of Equations (A. 1), (A. 2) and (26). one obtains from ex-

pressions (27), (28), and (29), respectively

a 2C1C e-j -C ic 2~
E1.C- ( +C- o 2 (A. 3)

E I I 7-,ee- 2C e+2c(.4

V1 *1 jo Zc I 6* j 2J A.

The space -charge -limited initial conditions are El1 -0 0, vl 1 0

when 6.-.. 0. By the use of the expansion,

i5



j-* je - (1 /2) e0,

one, now finds

CI=ic C2 ji c *(A. 6)

Thus Z1can be expressed as

and the a-c voltag, across the diode becomes

dz 0 2 O 0 2-2-o-J9-e+ d
vuf El~f As JUG *0 f() [z2~J0~

0 0 a02

P Io (I -CosS 0 8sino]

-j 1~ 6 3+91 + Cos 00)~ 2 sine} 0 (A. 8)

where use has been made of Equation (A. 2) and the fact that ~ P is a

constant. One easily finds

PI 0 ~0 2 O R(A9
j7 7- 3 -I 0  , A9

16



where V ° = d-c anode voltage, I ° = total d-c electron current, R o = the

differentiat low-frequency impedance dV/dI, from the energy relation

m ov 2/2 = 4Vo and Equation (A. 2).

Thb htgh-frequency diode impedance can now be written

Zc--R { [2(l - coo8 e)-e. sin e0c Ai - 0o 4 0 o
0 0

3 + e o 11 + cos o - 2 sine , (A. 10)

which is the well-known expression obtained by Llewellyn in an entirely

different manner.
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